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Bad Job Practices

� job submissions within a loop (take a long time)

for i in {1..1000}
do

sbatch job.sh $i
done

� loop inside job script (sequence of mpirun commands):

for i in {1..1000}
do

mpirun -np 16 my_program $i
done

2



Array Jobs

� submit/run a series of independent jobs via a single SLURM script
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Array Jobs

� submit/run a series of independent jobs via a single SLURM script

� each job in the array gets a unique identifier (SLURM_ARRAY_TASK_ID) based
on which various workloads can be organized

� example (job_array_vsc5.sh), 10 jobs, SLURM_ARRAY_TASK_ID=1,2,3 . . . 10

#!/bin/bash
#SBATCH -J array
#SBATCH -N 1
#SBATCH --array=1-10

echo "Hi, this is array job number" $SLURM_ARRAY_TASK_ID
sleep $SLURM_ARRAY_TASK_ID
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Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user
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Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user

� corresponding SLURM output files
VSC-5 > ls slurm-*
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Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user

� corresponding SLURM output files
VSC-5 > ls slurm-*

� explicit content of a single SLURM output file
VSC-5 > cat slurm-499514_8.out
Hi, this is array job number 8 4



Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)
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Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)

� example of going in chunks of a certain size, e.g. 5,
SLURM_ARRAY_TASK_ID=1,6,11,16

#SBATCH --array=1-20:5
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Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)

� example of going in chunks of a certain size, e.g. 5,
SLURM_ARRAY_TASK_ID=1,6,11,16

#SBATCH --array=1-20:5

� example of limiting number of simultaneously running jobs to 2 (perhaps for
licences)

#SBATCH --array=1-20:5%2
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Single Core Jobs

� use an entire compute node for several independent jobs
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Single Core Jobs

� use an entire compute node for several independent jobs

� example single_node_multiple_jobs_vsc5.sh:
#!/bin/bash
#SBATCH -J snglcre
#SBATCH -N 1
#SBATCH -p zen3_0512
#SBATCH --qos=zen3_0512

for ((i=1; i<=128; i++))
do

stress --cpu 1 --timeout $i &
done
wait
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Single Core Jobs

� & is important ! sends the process into the background so that the script can
continue
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Single Core Jobs

� & is important ! sends the process into the background so that the script can
continue

� "wait" is also important ! waits for all processes in the background to terminate
before moving on
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Combination of Array and Single Core Job

� example combined_array_multiple_jobs_vsc5.sh:
. . .

#SBATCH -N 1
#SBATCH --array=1-384:128

j=$SLURM_ARRAY_TASK_ID
((j+=127))

for ((i=$SLURM_ARRAY_TASK_ID; i<=$j; i++))
do

stress --cpu 1 --timeout $i &
done
wait
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Exercises

� files are located in folder examples/05_submitting_batch_jobs

� look into "job_array_vsc[4, 5].sh" and modify it such that the considered range is
from 1 to 20 but in steps of 5

� look into "single_node_multiple_jobs_vsc[4, 5].sh" and also change it to go in
steps of 5

� run "combined_array_multiple_jobs_vsc[4, 5].sh" and check whether the output
is reasonable
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Job Script Enhancements

� usage of corresponding environmental variables

#SBATCH Environmental Variable

-N SLURM_JOB_NUM_NODES
--ntasks-per-core SLURM_NTASKS_PER_CORE
--ntasks-per-node SLURM_NTASKS_PER_NODE
--ntasks [-n] SLURM_NTASKS
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Job Script Enhancements

� usage of corresponding environmental variables

#SBATCH Environmental Variable

-N SLURM_JOB_NUM_NODES
--ntasks-per-core SLURM_NTASKS_PER_CORE
--ntasks-per-node SLURM_NTASKS_PER_NODE
--ntasks [-n] SLURM_NTASKS

� email notifications
. . .

#SBATCH --mail-user=yourmail@example.com
#SBATCH --mail-type=BEGIN,END
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Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]
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Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]

� backfilling:
the specified time is an estimate of your required computing time; if this is shorter
than the default runtime limit (mostly 24h), SLURM may squeeze it in on idle
nodes waiting for a larger job;
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Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]

� backfilling:
the specified time is an estimate of your required computing time; if this is shorter
than the default runtime limit (mostly 24h), SLURM may squeeze it in on idle
nodes waiting for a larger job;

� max runtime limit is 72h
. . .

#SBATCH --time=03-00:00:00
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Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation
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Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

� contact support@vsc.ac.at

� reservations are named after the project id

� check for reservations
VSC-5> scontrol show reservations

� using reservations
. . .

#SBATCH --reservation=MyRsrv
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Job Dependencies

1. Submit first job and get its <job_id>
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Job Dependencies

1. Submit first job and get its <job_id>

2. Submit dependent job using the just received parent <job_id>
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --dependency=afterany:<job_id>
mpirun -np 256 my_prog
. . .
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Job Dependencies

1. Submit first job and get its <job_id>

2. Submit dependent job using the just received parent <job_id>
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --dependency=afterany:<job_id>
mpirun -np 256 my_prog
. . .

3. continue with 2. for further dependent jobs
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MPI + Pinning

� important issue to place various processes correctly on individual cores
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MPI + Pinning

� important issue to place various processes correctly on individual cores

� use only a few processes per node if memory demand is high

� details: https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning
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MPI + Pinning

� important issue to place various processes correctly on individual cores

� use only a few processes per node if memory demand is high

� details: https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning

� "srun" example 2 nodes with two MPI processes each
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --tasks-per-node=2

srun --cpu-bind=map_cpu:0,64 ./my_mpi_program

14

https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning


MPI + Pinning

� "INTEL MPI" example 2 nodes with two MPI processes each
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --tasks-per-node=2

export I_MPI_PIN_PROCESSOR_LIST=0,64
mpirun -np 4 ./my_mpi_program
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Exercises-2

� check for available reservations. If there is one available, use it

� specify an email address that notifies you when your job has finished
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