
SLURM – Advanced Usage

March 12, 2025

1

Bad Job Practices

� job submissions within a loop (take a long time)

for i in {1..1000}
do

sbatch job.sh $i
done

� loop inside job script (sequence of mpirun commands):

for i in {1..1000}
do

mpirun -np 16 my_program $i
done

2

Array Jobs

� submit/run a series of independent jobs via a single SLURM script

3

Array Jobs

� submit/run a series of independent jobs via a single SLURM script

� each job in the array gets a unique identifier (SLURM_ARRAY_TASK_ID) based
on which various workloads can be organized

3

Array Jobs

� submit/run a series of independent jobs via a single SLURM script

� each job in the array gets a unique identifier (SLURM_ARRAY_TASK_ID) based
on which various workloads can be organized

� example (job_array_vsc5.sh), 10 jobs, SLURM_ARRAY_TASK_ID=1,2,3 . . . 10

#!/bin/bash
#SBATCH -J array
#SBATCH -N 1
#SBATCH --array=1-10

echo "Hi, this is array job number" $SLURM_ARRAY_TASK_ID
sleep $SLURM_ARRAY_TASK_ID

3

Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user

4

Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user

� corresponding SLURM output files
VSC-5 > ls slurm-*

4

Array Jobs

� independent jobs: 1, 2, 3 . . . 10
VSC-5 > squeue -u $user

� corresponding SLURM output files
VSC-5 > ls slurm-*

� explicit content of a single SLURM output file
VSC-5 > cat slurm-499514_8.out
Hi, this is array job number 8 4

Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)

5

Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)

� example of going in chunks of a certain size, e.g. 5,
SLURM_ARRAY_TASK_ID=1,6,11,16

#SBATCH --array=1-20:5

5

Array Jobs

� fine-tuning via builtin variables (SLURM_ARRAY_TASK_MIN,
SLURM_ARRAY_TASK_MAX etc)

� example of going in chunks of a certain size, e.g. 5,
SLURM_ARRAY_TASK_ID=1,6,11,16

#SBATCH --array=1-20:5

� example of limiting number of simultaneously running jobs to 2 (perhaps for
licences)

#SBATCH --array=1-20:5%2

5

Single Core Jobs

� use an entire compute node for several independent jobs

6

Single Core Jobs

� use an entire compute node for several independent jobs

� example single_node_multiple_jobs_vsc5.sh:
#!/bin/bash
#SBATCH -J snglcre
#SBATCH -N 1
#SBATCH -p zen3_0512
#SBATCH --qos=zen3_0512

for ((i=1; i<=128; i++))
do

stress --cpu 1 --timeout $i &
done
wait

6

Single Core Jobs

� & is important ! sends the process into the background so that the script can
continue

7

Single Core Jobs

� & is important ! sends the process into the background so that the script can
continue

� "wait" is also important ! waits for all processes in the background to terminate
before moving on

7

Combination of Array and Single Core Job

� example combined_array_multiple_jobs_vsc5.sh:
. . .

#SBATCH -N 1
#SBATCH --array=1-384:128

j=$SLURM_ARRAY_TASK_ID
((j+=127))

for ((i=$SLURM_ARRAY_TASK_ID; i<=$j; i++))
do

stress --cpu 1 --timeout $i &
done
wait

8

Exercises

� files are located in folder examples/05_submitting_batch_jobs

� look into "job_array_vsc[4, 5].sh" and modify it such that the considered range is
from 1 to 20 but in steps of 5

� look into "single_node_multiple_jobs_vsc[4, 5].sh" and also change it to go in
steps of 5

� run "combined_array_multiple_jobs_vsc[4, 5].sh" and check whether the output
is reasonable

9

Job Script Enhancements

� usage of corresponding environmental variables

#SBATCH Environmental Variable

-N SLURM_JOB_NUM_NODES
--ntasks-per-core SLURM_NTASKS_PER_CORE
--ntasks-per-node SLURM_NTASKS_PER_NODE
--ntasks [-n] SLURM_NTASKS

10

Job Script Enhancements

� usage of corresponding environmental variables

#SBATCH Environmental Variable

-N SLURM_JOB_NUM_NODES
--ntasks-per-core SLURM_NTASKS_PER_CORE
--ntasks-per-node SLURM_NTASKS_PER_NODE
--ntasks [-n] SLURM_NTASKS

� email notifications
. . .

#SBATCH --mail-user=yourmail@example.com
#SBATCH --mail-type=BEGIN,END

10

Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]

11

Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]

� backfilling:
the specified time is an estimate of your required computing time; if this is shorter
than the default runtime limit (mostly 24h), SLURM may squeeze it in on idle
nodes waiting for a larger job;

11

Submission Scripts Tuning

� using time constraints less than runtime limits
. . .

#SBATCH --time=DD-HH[:MM[:SS]]

� backfilling:
the specified time is an estimate of your required computing time; if this is shorter
than the default runtime limit (mostly 24h), SLURM may squeeze it in on idle
nodes waiting for a larger job;

� max runtime limit is 72h
. . .

#SBATCH --time=03-00:00:00

11

Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

12

Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

� contact support@vsc.ac.at

12

Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

� contact support@vsc.ac.at

� reservations are named after the project id

12

Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

� contact support@vsc.ac.at

� reservations are named after the project id

� check for reservations
VSC-5> scontrol show reservations

12

Reservation of Compute Nodes

� core-h accounting is done for the entire period of reservation

� contact support@vsc.ac.at

� reservations are named after the project id

� check for reservations
VSC-5> scontrol show reservations

� using reservations
. . .

#SBATCH --reservation=MyRsrv

12

Job Dependencies

1. Submit first job and get its <job_id>

13

Job Dependencies

1. Submit first job and get its <job_id>

2. Submit dependent job using the just received parent <job_id>
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --dependency=afterany:<job_id>
mpirun -np 256 my_prog
. . .

13

Job Dependencies

1. Submit first job and get its <job_id>

2. Submit dependent job using the just received parent <job_id>
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --dependency=afterany:<job_id>
mpirun -np 256 my_prog
. . .

3. continue with 2. for further dependent jobs

13

MPI + Pinning

� important issue to place various processes correctly on individual cores

14

MPI + Pinning

� important issue to place various processes correctly on individual cores

� use only a few processes per node if memory demand is high

14

MPI + Pinning

� important issue to place various processes correctly on individual cores

� use only a few processes per node if memory demand is high

� details: https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning

14

https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning

MPI + Pinning

� important issue to place various processes correctly on individual cores

� use only a few processes per node if memory demand is high

� details: https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning

� "srun" example 2 nodes with two MPI processes each
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --tasks-per-node=2

srun --cpu-bind=map_cpu:0,64 ./my_mpi_program

14

https://wiki.vsc.ac.at/doku.php?id=doku:slurm_corepinning

MPI + Pinning

� "INTEL MPI" example 2 nodes with two MPI processes each
#!/bin/bash
#SBATCH -J myjb
#SBATCH -N 2
#SBATCH --tasks-per-node=2

export I_MPI_PIN_PROCESSOR_LIST=0,64
mpirun -np 4 ./my_mpi_program

15

Exercises-2

� check for available reservations. If there is one available, use it

� specify an email address that notifies you when your job has finished

16

	Bad Job Practices
	Array Jobs
	Single Core Jobs
	Combination of Array and Single Core Job
	Exercises
	Job Script Enhancements
	Submission Scripts Tuning
	Reservation of Compute Nodes
	Job Dependencies
	MPI + Pinning
	Exercises-2

