
N-WAYS GPU BOOTCAMP
CUDA C/FORTRAN

CUDA Introduction

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS

• Parallel portion of application: execute as a kernel

• Entire GPU executes kernel, many threads

• CUDA threads:

• Lightweight

• Fast switching

• Tens of thousands execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling
and simulation application

• The NVIDIA HPC SDK includes the NVIDIA HPC compiler supporting CUDA C and Fortran

• The command to compile CUDA C code is ‘nvcc’

• The command to compile C++ code is ‘nvc++’

• The command to compile Fortran code is ‘nvfortran’

nvcc main.cu

nvfortran main.f90

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Hello, World!

int main(void) {
printf("Hello, World!\n");
return 0;

}

This basic program is just standard C/Fortran that runs on the host

NVIDIA’s compiler (nvcc/nvfortran) will not complain about CUDA programs with no device code

At its simplest, CUDA C/Fortran is just C/Fortran!

program main

implicit none

print *, “Hello World”

end program main

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Hello, World! with Device Code

__global__ void kernel(void) {

printf(“Hello from the GPU!”);

}

int main(void) {

kernel<<<1,1>>>();

cudaDeviceSynchronize();

return 0;

}

Three notable additions to the original “Hello, World!”

module printgpu
contains

attributes(global) subroutine print_from_gpu()
implicit none
print *, “Hello from the GPU!”

end subroutine print_from_gpu
end module printgpu

program testPrint
use printgpu
use cudafor
implicit none
integer istat

call print_from_gpu<<<1, 1>>>()
istat = cudaDeviceSynchronize();

end program testPrint

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Parallel Programming in CUDA

• But wait…GPU computing is about massive parallelism

• So how do we run code in parallel on the device?

• Solution lies in the parameters between the triple angle brackets:

doSomethingOnce<<< 1, 1 >>>();

doSomethingLots<<< NumBlocks, NumThreads >>>();

• Instead of executing once, doSomethingLots() executes NumBlocks * NumThreads
times, in parallel

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: PARALLEL THREADS

• All threads execute the same code, can take
different paths (SIMT)

• A warp is a group of 32 threads

• Instructions are issued to warps rather than
individual threads

• Can have non-multiple of 32 threads – but GPU is
optimised for 32 threads in a warp

• The threads within a warp execute in lockstep –
try to minimize branching if possible

• doSomethingLots<<< 1, 32 >>>() would
launch a single warp, i.e. 32 threads

• Thus our kernel would execute 32 times

float x = input[threadID];

float y = func(x);

output[threadID] = y;

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: BLOCKS

• A block is collection of warps (usually up to 32
warps - so up to 1024 threads in a block)

• When executing, a block resides on a particular
streaming multiprocessor on the GPU – it will not
migrate

• Enables local cooperation for threads within a
block via shared memory (memory local to the SM)

• This permits scalability – fast communications
between N threads is not feasible when N is large

• doSomethingLots<<< 10, 1 >>>() would
launch 10 blocks, with 1 thread per block

• Our kernel would execute 10 times

12
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: GRIDS

• Blocks are grouped into a grid – this is the entirety
of work that we want to get done by the kernel

• Grid is determined by the execution configuration
– the angled brackets, triple chevrons – giving the
number of blocks and the number of threads per
block

• doSomethingLots<<< 10, 256 >>>() would
launch 10 blocks, with 256 threads per block

• Our kernel would execute 2560 times

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: DISTRIBUTION OF WORK

• We can now get our kernel to execute several
times

• How to distribute the workload? One way would be
to have each thread operate on one data element

• But how do we determine which thread, in which
block, is currently executing? …

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA-DEFINED VARIABLES FOR INDEXING

• gridDim.x – number of blocks in the grid

• blockIdx.x – index of the block in the grid (takes
values from 0 to gridDim.x-1)

• blockDim.x – number of threads per block

• threadIdx.x – index of a thread within a block (0 to
blockDim.x-1)

• Then we can define a global thread ID:

globalThreadID = threadIdx.x + blockIdx.x * blockDim.x

• Similarly in Fortran:

globalThreadID = threadidx%x+(blockidx%x-1)*blockdim%x

gridDim.x
blockDim.x

blockIdx.x

threadIdx.x

doSomethingLots<<< 4, 8 >>>()

0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

…
…
…

CUDA-capable GPU

CUDA thread CUDA core

CUDA thread block

• Each thread is executed by a core

• Each block is executed by one SM

and does not migrate

• Several concurrent blocks can

reside on one SM depending on

the blocks’ requirements and the

SM’s resources

• Each kernel is executed on one

device

• Multiple kernels can execute on a

device at one time

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

KERNEL EXECUTION

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GENERAL RULE FOR CHOICE OF NUM
THREADS/NUM BLOCKS

• Today’s examples – numThreads*numBlocks chosen to match dataset size

• Grid-stride loops are an alternative approach which allows us to work with arbitrary size datasets

• numThreads = 32*k, k=1, or 2, … or 32

• Instructions can be issued to 32 threads at once (a warp)

• Device-specific, but max number of threads per block is usually 1024 (i.e. 32 x 32) link

• numBlocks = numSM*m, m=1, 2, …

• numSM = number of streaming multiprocessors on the device (cudaGetDeviceProperties)

• Multiples like this help with load-balancing

• On V100 <<<80, 64>>> would create same number of threads as there are cores

• But ideally want more threads than this … e.g. <<<16*80, 256>>>

• There is an API to help: Occupancy API blog

https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://developer.nvidia.com/blog/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Vector addition

__global__ void add(int *a, int *b, int *c) {

int myID =

threadIdx.x + blockIdx.x * blockDim.x;

c[myID] = a[myID] + b[myID];

}

attributes(global) subroutine add(n, a, b, c)

integer, value :: n

integer, device :: a(n), b(n), c(n)

integer :: myid

myid = (blockidx%x-1)*blockdim%x + threadidx%x

c(myid) = a(myid) + b(myid)

end subroutine add

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY MANAGEMENT
• Recall host and device memory are distinct entities

• There is a CUDA API for explicit device memory management

• cudaMalloc(), cudaFree(), cudaMemcpy() ...

• Similar to their C equivalents, malloc(), free(), memcpy()

• Similar to their Fortran equivalents, allocate(), deallocate

• For today’s session we are going to use managed memory (also known as unified memory)

• This allows the developer to concentrate on parallelism and think about data movement as an optimisation

• CUDA API for using unified memory is

• C API: cudaMallocManaged(), cudaFree()

• Fortran: Declare variable with managed, allocatable attribute

• real, managed, allocatable, dimension(:,:) :: A, B, C
optimization

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Vector addition : main

#define N (2048*2048)
#define THREADS_PER_BLOCK 256

int main(void) {
int *a, *b, *c, numBlocks;
int size = sizeof(int)*N;

cudaMallocManaged(&a, size);
cudaMallocManaged(&b, size);
cudaMallocManaged(&c, size);

numBlocks = N/THREADS_PER_BLOCK;

add<<< numBlocks,THREADS_PER_BLOCK>>>(a,
b, c);

cudaFree(a);
cudaFree(b);
cudaFree(c);
return 0;

}

program main
use cudafor

integer, parameter:: numThreads = 256
integer, parameter:: n = 2048*2048
integer :: numBlocks
real, managed, allocatable, dimension(:) :: a, b, c

allocate(a(n))
allocate(b(n))
allocate(c(n))

numBlocks = n / numThreads;

call add<<< numBlocks, numThreads >>>(n, a, b, c)

deallocate(d_a)
deallocate(d_b)
deallocate(d_c)

end program main

CUDA ARCHITECTURE
MEMORY MODEL

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

e.g. A100 80GB with bandwidth currently up to 2 TB/s

Streaming Multiprocessors (SMs)

SMs perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

Two Main components

D
R

A
M

 I
/F

G
ig

a
 T

h
re

a
d

H
O

S
T

 I
/F

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory

•All blocks

•Global memory

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Acknowledgment

Copyright © 2022 OpenACC-Standard.org. This material is released by OpenACC-
Standard.org, in collaboration with NVIDIA Corporation, under the Creative Commons
Attribution 4.0 International (CC BY 4.0). These materials may include references to
hardware and software developed by other entities; all applicable licensing and
copyrights apply.

http://openacc-standard.org/
http://openacc-standard.org/
http://openacc-standard.org/

WWW.OPENHACKATHONS.ORG

Learn more at

	Slide 1: N-WAYS GPU BOOTCAMP CUDA C/FORTRAN
	Slide 4: CUDA Introduction
	Slide 5: CUDA KERNELS
	Slide 6: NVIDIA HPC SDK
	Slide 7: Hello, World!
	Slide 8: Hello, World! with Device Code
	Slide 9: Parallel Programming in CUDA
	Slide 10: CUDA KERNELS: PARALLEL THREADS
	Slide 11: CUDA KERNELS: BLOCKS
	Slide 12: CUDA KERNELS: GRIDS
	Slide 13: CUDA KERNELS: DISTRIBUTION OF WORK
	Slide 14: CUDA-DEFINED VARIABLES FOR INDEXING
	Slide 15: KERNEL EXECUTION
	Slide 16: GENERAL RULE FOR CHOICE OF NUM THREADS/NUM BLOCKS
	Slide 17: Vector addition
	Slide 18: MEMORY MANAGEMENT
	Slide 19: Vector addition : main
	Slide 20: CUDA ARCHITECTURE MEMORY MODEL
	Slide 21: GPU ARCHITECTURE
	Slide 22: MEMORY HIERARCHY
	Slide 23: MEMORY HIERARCHY
	Slide 24: MEMORY HIERARCHY
	Slide 25: MEMORY HIERARCHY
	Slide 26: Acknowledgment
	Slide 27: WWW.OPENHACKATHONS.ORG

