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CUDA KERNELS

• Parallel portion of application: execute as a kernel

• Entire GPU executes kernel, many threads

• CUDA threads:

• Lightweight

• Fast switching

• Tens of thousands execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels
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NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling 
and simulation application

• The NVIDIA HPC SDK includes the NVIDIA HPC compiler supporting CUDA C and Fortran

• The command to compile CUDA C code is ‘nvcc’

• The command to compile C++ code is ‘nvc++’

• The command to compile Fortran code is ‘nvfortran’

nvcc main.cu

nvfortran main.f90
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Hello, World!

int main( void ) {
printf( "Hello, World!\n" );
return 0;

}

This basic program is just standard C/Fortran that runs on the host

NVIDIA’s compiler (nvcc/nvfortran) will not complain about CUDA programs with no device code

At its simplest, CUDA C/Fortran is just C/Fortran!

program main

implicit none

print *, “Hello World”

end program main
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Hello, World! with Device Code

__global__ void kernel( void ) {

printf(“Hello from the GPU!”);

} 

int main( void ) {

kernel<<<1,1>>>();

cudaDeviceSynchronize();

return 0;

}

Three notable additions to the original “Hello, World!”

module printgpu
contains

attributes(global) subroutine print_from_gpu()
implicit none
print *, “Hello from the GPU!”

end subroutine print_from_gpu
end module printgpu

program testPrint
use printgpu
use cudafor
implicit none
integer istat

call print_from_gpu<<<1, 1>>>()
istat = cudaDeviceSynchronize();

end program testPrint



9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Parallel Programming in CUDA

• But wait…GPU computing is about massive parallelism

• So how do we run code in parallel on the device?

• Solution lies in the parameters between the triple angle brackets:

doSomethingOnce<<< 1, 1 >>>();

doSomethingLots<<< NumBlocks, NumThreads >>>();

• Instead of executing once, doSomethingLots() executes NumBlocks * NumThreads
times, in parallel
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CUDA KERNELS: PARALLEL THREADS

• All threads execute the same code, can take 
different paths (SIMT)

• A warp is a group of 32 threads

• Instructions are issued to warps rather than 
individual threads

• Can have non-multiple of 32 threads – but GPU is 
optimised for 32 threads in a warp

• The threads within a warp execute in lockstep –
try to minimize branching if possible

• doSomethingLots<<< 1, 32 >>>() would 
launch a single warp, i.e. 32 threads

• Thus our kernel would execute 32 times

float x = input[threadID];

float y = func(x);

output[threadID] = y;
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CUDA KERNELS: BLOCKS

• A block is collection of warps (usually up to 32 
warps - so up to 1024 threads in a block)

• When executing, a block resides on a particular 
streaming multiprocessor on the GPU – it will not 
migrate

• Enables local cooperation for threads within a 
block via shared memory (memory local to the SM)

• This permits scalability – fast communications 
between N threads is not feasible when N is large

• doSomethingLots<<< 10, 1 >>>() would 
launch 10 blocks, with 1 thread per block

• Our kernel would execute 10 times
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CUDA KERNELS: GRIDS

• Blocks are grouped into a grid – this is the entirety 
of work that we want to get done by the kernel

• Grid is determined by the execution configuration 
– the angled brackets, triple chevrons – giving the 
number of blocks and the number of threads per 
block

• doSomethingLots<<< 10, 256 >>>() would 
launch 10 blocks, with 256 threads per block

• Our kernel would execute 2560 times
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CUDA KERNELS: DISTRIBUTION OF WORK

• We can now get our kernel to execute several 
times

• How to distribute the workload? One way would be 
to have each thread operate on one data element

• But how do we determine which thread, in which 
block, is currently executing? …
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CUDA-DEFINED VARIABLES FOR INDEXING

• gridDim.x – number of blocks in the grid

• blockIdx.x – index of the block in the grid (takes 
values from 0 to gridDim.x-1)

• blockDim.x – number of threads per block

• threadIdx.x – index of a thread within a block (0 to 
blockDim.x-1)

• Then we can define a global thread ID:

globalThreadID = threadIdx.x + blockIdx.x * blockDim.x

• Similarly in Fortran:

globalThreadID = threadidx%x+(blockidx%x-1)*blockdim%x

gridDim.x
blockDim.x

blockIdx.x

threadIdx.x

doSomethingLots<<< 4, 8 >>>()

0       1       2      3

0 1 2 3 4 5 6 7   0 1 2 3 4 5 6 7   0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7
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…
…
…

CUDA-capable GPU

CUDA thread CUDA core

CUDA thread block

• Each thread is executed by a core

• Each block is executed by one SM 

and does not migrate

• Several concurrent blocks can 

reside on one SM depending on 

the blocks’ requirements and the 

SM’s resources

• Each kernel is executed on one 

device

• Multiple kernels can execute on a 

device at one time

…

CUDA Streaming 

Multiprocessor

CUDA kernel grid

...

KERNEL EXECUTION
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GENERAL RULE FOR CHOICE OF NUM 
THREADS/NUM BLOCKS

• Today’s examples – numThreads*numBlocks chosen to match dataset size

• Grid-stride loops are an alternative approach which allows us to work with arbitrary size datasets

• numThreads = 32*k, k=1, or 2, … or 32

• Instructions can be issued to 32 threads at once (a warp)

• Device-specific, but max number of threads per block is usually 1024 (i.e. 32 x 32) link

• numBlocks = numSM*m, m=1, 2, … 

• numSM = number of streaming multiprocessors on the device (cudaGetDeviceProperties)

• Multiples like this help with load-balancing

• On V100 <<<80, 64>>> would create same number of threads as there are cores

• But ideally want more threads than this … e.g. <<<16*80, 256>>>

• There is an API to help: Occupancy API blog

https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://developer.nvidia.com/blog/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
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Vector addition

__global__ void add( int *a, int *b, int *c ) {

int myID =

threadIdx.x + blockIdx.x * blockDim.x;

c[myID] = a[myID] + b[myID];

}

attributes(global) subroutine add(n, a, b, c)

integer, value :: n

integer, device :: a(n), b(n), c(n)

integer :: myid

myid = (blockidx%x-1)*blockdim%x + threadidx%x

c(myid) = a(myid) + b(myid)

end subroutine add
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MEMORY MANAGEMENT
• Recall host and device memory are distinct entities

• There is a CUDA API for explicit device memory management

• cudaMalloc(), cudaFree(), cudaMemcpy() ...

• Similar to their C equivalents, malloc(), free(), memcpy()

• Similar to their Fortran equivalents, allocate(), deallocate

• For today’s session we are going to use managed memory (also known as unified memory)

• This allows the developer to concentrate on parallelism and think about data movement as an optimisation

• CUDA API for using unified memory is

• C API: cudaMallocManaged(), cudaFree()

• Fortran: Declare variable with managed, allocatable attribute

• real, managed, allocatable, dimension(:,:) :: A, B, C
optimization
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Vector addition : main

#define N (2048*2048)
#define THREADS_PER_BLOCK 256   

int main( void ) {
int *a, *b, *c, numBlocks;
int size = sizeof( int )*N;

cudaMallocManaged( &a, size );
cudaMallocManaged( &b, size );
cudaMallocManaged( &c, size );

numBlocks = N/THREADS_PER_BLOCK;

add<<< numBlocks,THREADS_PER_BLOCK>>>( a, 
b, c );

cudaFree( a );
cudaFree( b );
cudaFree( c );
return 0;

}

program main
use cudafor

integer, parameter:: numThreads = 256
integer, parameter:: n = 2048*2048
integer :: numBlocks
real, managed, allocatable, dimension(:) :: a, b, c

allocate(a(n))
allocate(b(n))
allocate(c(n))

numBlocks = n / numThreads;

call add<<< numBlocks, numThreads >>>(n, a, b, c)

deallocate(d_a)
deallocate(d_b)
deallocate(d_c)

end program main



CUDA ARCHITECTURE 
MEMORY MODEL
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GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

e.g. A100 80GB with bandwidth currently up to 2 TB/s 

Streaming Multiprocessors (SMs)

SMs perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

Two Main components
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MEMORY HIERARCHY

•Thread

•Registers
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MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory
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MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory
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MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory

•All blocks

•Global memory
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