
N-WAYS GPU BOOTCAMP
OPENMP TARGET OFFLOAD

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

What to expect?

• OpenMP basic

• OpenMP target offload constructs for accelerated computing

• Portability between multicore and GPU

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

• 1996 - Architecture Review Board (ARB) formed by several vendors implementing their own directives for
Shared Memory Parallelism (SMP).

• 1997 - 1.0 was released for C/C++ and Fortran with support for parallelizing loops across threads.

• 2000, 2002 – Version 2.0 of Fortran, C/C++ specifications released.

• 2005 – Version 2.5 released, combining both specs into one.

• 2008 – Version 3.0 released, added support for tasking

• 2011 – Version 3.1 release, improved support for tasking

• 2013 – Version 4.0 released, added support for offloading (and more)

• 2015 – Version 4.5 released, improved support for offloading targets (and more)

A Brief History

OPENMP ON CPU

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

#pragma omp directive !$ omp directive

• #pragma in C/C++ is what's known as a "compiler hint."

• omp is an addition to our pragma, it is known as the “sentinel”. It specifies that this is an
OpenMP pragma. Any non-OpenMP compiler will ignore this pragma.

• directives are commands in OpenMP that will tell the compiler to do some action. For
now, we will only use directives that allow the compiler to parallelize our code

Syntax

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Fork Join Model

• OpenMP uses the fork-join model of parallel execution.
All OpenMP programs begin as a single process: the
master thread. The master thread executes sequentially
until the first parallel region construct is encountered.

• FORK: the master thread then creates a team of parallel
threads. The statements in the program that are
enclosed by the parallel region construct are then
executed in parallel among the various team threads.

• JOIN: When the team threads complete the statements
in the parallel region construct, they synchronize and
terminate, leaving only the master thread.

Fork Join Model

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

PARALLEL Directive

• Spawns a team of threads

• Execution continues redundantly on all threads of
the team.

• All threads join at the end and the master thread
continues execution.

Parallel Region

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

//Include the header file
#include <omp.h>

main(int argc, char *argv[]) {

int nthreads;

/* Fork a team of threads*/
#pragma omp parallel

{

/* Obtain and print thread id */
printf("Hello World from thread = %d\n", omp_get_thread_num());

/* Only master thread does this */
if (omp_get_thread_num() == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and terminate */
}

OpenMP Parallel Region

Include Header File

• Spawns parallel region

• Get Thread Id

C - Syntax

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

program hello
integer :: omp_rank

!$omp parallel private(omp_rank)

omp_rank = omp_get_thread_num()
print *, 'Hello world! by thread ', omp_rank

!$omp end parallel

end program hello

OpenMP Parallel Region

• Spawns parallel region

• Get Thread Id

Fortran - Syntax

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

FOR/DO (Loop) Directive

• Divides (“workshares”) the iterations of the next loop
across the threads in the team

• How the iterations are divided is determined by a
schedule.

Worksharing

//Create a team of threads
#pragma omp parallel
{
//workshare this loop across those threads.

#pragma omp for
for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel region */

!Create a team of threads
!$omp parallel
!workshare this loop across those threads.

!$omp do
do i=1,N

< loop code >
end do

!$omp end parallel

FortranC/C++

TARGETING THE GPU

12
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

TARGET Directive

• Offloads execution and associated data from
the CPU to the GPU

• The target device owns the data, accesses by
the CPU during the execution of the target
region are forbidden.

• Data used within the region may be implicitly or
explicitly mapped to the device.

• All of OpenMP is allowed within target regions,
but only a subset will run well on GPUs.

Target Offloading

#pragma omp target

{

#pragma omp parallel for reduction(max:error)

for(int j = 1; j < n-1; j++) {

…

}

}

!Moves this region of code to the GPU and implicitly maps data.

!$omp target

!$omp parallel for

do i=2,N-1

ANew(i) = A (i-1) + A(i+1)

end do

!$omp end target

C/C++

Fortran

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Teams Directive

• To better utilize the GPU resources, use many thread
teams via the TEAMS directive.

• Spawns 1 or more thread teams with the same number
of threads

• Execution continues on the master threads of each team
(redundantly)

• No synchronization between teams

Teams

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Distribute Directive

• Distributes the iterations of the next loop to the master
threads of the teams.

• Iterations are distributed statically.

• There’s no guarantees about the order teams will
execute.

• No guarantee that all teams will execute simultaneously

• Does not generate parallelism/worksharing within the
thread teams.

Teams

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Loop Directive

• Expose more parallelism in a program is to allow a
compiler to do the mapping onto the target architectures

• Similar to OpenACC, compiler translates the parallel
region into a kernel that runs in parallel on the GPU

• The programmer specifies the loop regions to be
parallelized by the compiler and the compilers parallelize
loop across teams and threads using “teams loop”
construct

Teams

#pragma omp target teams loop reduction(max:error)
for(int j = 1; j < n-1; j++) {
#pragma omp loop reduction(max:error)
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25f * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmaxf(error, fabsf(Anew[j][i]-
A[j][i]));

}
}

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

TARGET Data Directive

• Offloads data from the CPU to the GPU, but not execution

• The target device owns the data, accesses by the CPU during the execution of contained target regions
are forbidden.

• Useful for sharing data between TARGET regions

Data Offloading

#pragma omp target data map(to:A[:n]) map(from:ANew[:n])

{

#pragma omp parallel for

for(int j = 1; j < n-1; j++) {

ANew[j] = A [j-1] + A[j+1];

}

}

!$omp target data map(to:A(:)) map(from:ANew(:))

!$omp parallel do

do j=2,N-1

ANew(j) = A (j-1) + A(j+1)

end do

!$omp end target data

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Summary

● omp target teams loop

○ Recommended way

○ You can use num_teams and thread_limit clauses

● omp target loop

○ Fully automatic

○ You cannot use num_teams / thread_limit

● omp target parallel loop

○ Uses only threads, and doesn’t use teams

○ Might be useful for light kernels

START Offloading “OMP LOOP” Three ways

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU Porting advice for OpenMP Programmers

● Re-order loops or transpose arrays to enable SIMD/SIMT accesses in outermost loops

● Use collapse(N) directives on loops to increase parallelism

● Replace critical sections with atomics

● Remove all I/O statements

● Remove memory allocation

● Use compiler feedback to identify and factor out unsupported or non-scalable OpenMP constructs and API calls

● Parallelism, Parallelism, Parallelism …

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Best Practices for OpenMP on GPUs

▪ Use the teams and distribute directive to expose all available parallelism

▪ Use the loop directive when the mapping to hardware isn’t obvious

▪ Aggressively collapse loops to increase available parallelism

▪ Use the target data directive and map clauses to reduce data movement between CPU and GPU

▪ …or just skip the target data directive and use managed memory

▪ Use OpenMP tasks to go asynchronous and better utilize the whole system

▪ Use host fallback (if clause) to generate host and device code

▪ Use accelerated libraries whenever possible

▪ Less is more with the NVIDIA compiler. Being pedantic can reduce performance.

BUILD AND RUN THE CODE

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling
and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP Target
Offload onto GPU

• The command to compile C code is ‘nvc’

• The command to compile C++ code is ‘nvc++’

• The command to compile fortran code is ‘nvfortran’

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP C and Fortran

• -mp: compiler switch to enable processing of OpenMP directives and pragmas

• gpu: OpenMP directives are compiled for GPU execution plus multicore CPU fallback; this Beta feature is
supported on Linux/x86 for NVIDIA V100 or later GPUs.

• multicore: OpenMP directives are compiled for multicore CPU execution only; this sub-option is the default.

nvc –mp=gpu main.c

nvfortran –Minfo=mp –mp=gpu main.f90

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

Use of loop in Fortran:

!$omp target teams loop

do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown

do ig_blk = 1, ig_blksize

do ig = ig_blk, ncouls, ig_blksize

do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize

!expensive computation codes

enddo

enddo

enddo

enddo

enddo

-Minfo shows more details

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop

42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel

Generating Tesla code

43, Loop parallelized across teams ! blockidx%x

44, Loop run sequentially

45, Loop run sequentially

46, Loop run sequentially

47, Loop parallelized across threads(128) !

threadidx%x

42, Generating Multicore code

43, Loop parallelized across threads

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++) {

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

• Across Frames

Pseudo Code - C

• Find Distance

• Reduction

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

• Map data to GPU

• Target offload construct

• Distribute inner loop

Pseudo Code - C

• Atomic construct

#pragma omp target data map(d_x[0:nconf*numatm],...)

for (int frame=0;frame<nconf;frame++) {

#pragma omp target teams distribute parallel for private(dx,dy,dz,r,ind)

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

#pragma omp atomic

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

27
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF
Pseudo Code - Fortran

• Map data to GPU

• Target offload construct

• Distribute inner loop

• Atomic Construct

!$omp target data map(x(:,:), y (:,:), z (:,:), g (:))

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

!$omp target teams distribute parallel do private(dx,dy,dz,r,ind)

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

...

if(r<cut)then

!$acc atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo

28
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PRIVATE CLAUSE

int x = 5;
#pragma omp parallel
{

int x;
x = 3;
printf("local: x is %d\n", x);

}

int x = 5;

#pragma omp parallel private(x)
{

x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also dangerous

In the C/C++ language it is possible to declare variables inside a
lexical scope ; roughly: inside curly braces.

This concept extends to OpenMP parallel regions and directives:
any variable declared in a block following an OpenMP directive

will be local to the executing thread

KNOWN LIMITATIONS

32
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SDK LIMITATION

• Not all functionality associated with loop is supported in the Beta release of OpenMP target
offload.

• The compilers support loop regions containing procedure calls as long as the callee does not
contain OpenMP directives.

33
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-
gpus-openmp.pdf

https://developer.nvidia.com/hpc-sdk

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

34
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Acknowledgment

Copyright © 2022 OpenACC-Standard.org. This material is released by OpenACC-
Standard.org, in collaboration with NVIDIA Corporation, under the Creative Commons
Attribution 4.0 International (CC BY 4.0). These materials may include references to
hardware and software developed by other entities; all applicable licensing and
copyrights apply.

http://openacc-standard.org/
http://openacc-standard.org/
http://openacc-standard.org/

WWW.OPENHACKATHONS.ORG

Learn more at

	Slide 1: N-WAYS GPU BOOTCAMP OPENMP TARGET OFFLOAD
	Slide 2: OPENMP
	Slide 3: OPENMP
	Slide 4: OPENMP ON CPU
	Slide 5: OPENMP
	Slide 6: OPENMP
	Slide 7: OPENMP
	Slide 8: OpenMP Parallel Region
	Slide 9: OpenMP Parallel Region
	Slide 10: OPENMP
	Slide 11: TARGETING THE GPU
	Slide 12: OPENMP
	Slide 13: OPENMP
	Slide 14: OPENMP
	Slide 15: OPENMP
	Slide 16: OPENMP
	Slide 17: Summary
	Slide 18: GPU Porting advice for OpenMP Programmers
	Slide 19: Best Practices for OpenMP on GPUs
	Slide 21: BUILD AND RUN THE CODE
	Slide 22: NVIDIA HPC SDK
	Slide 23: NVIDIA HPC SDK
	Slide 24: BUILDING THE CODE
	Slide 25: RDF
	Slide 26: RDF
	Slide 27: RDF
	Slide 28: PRIVATE CLAUSE
	Slide 31: KNOWN LIMITATIONS
	Slide 32: HPC SDK LIMITATION
	Slide 33: REFERENCES
	Slide 34: Acknowledgment
	Slide 35: WWW.OPENHACKATHONS.ORG

