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OPENMP

What to expect?

• OpenMP basic

• OpenMP target offload constructs for accelerated computing

• Portability between multicore and GPU
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OPENMP

• 1996 - Architecture Review Board (ARB) formed by several vendors implementing their own directives for 
Shared Memory Parallelism (SMP).

• 1997 - 1.0 was released for C/C++ and Fortran with support for parallelizing loops across threads.

• 2000, 2002 – Version 2.0 of Fortran, C/C++ specifications released.

• 2005 – Version 2.5 released, combining both specs into one.

• 2008 – Version 3.0 released, added support for tasking

• 2011 – Version 3.1 release, improved support for tasking

• 2013 – Version 4.0 released, added support for offloading (and more)

• 2015 – Version 4.5 released, improved support for offloading targets (and more)

A Brief History



OPENMP ON CPU
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OPENMP

#pragma omp directive !$ omp directive

• #pragma in C/C++ is what's known as a "compiler hint." 

• omp is an addition to our pragma, it is known as the “sentinel”. It specifies that this is an 
OpenMP pragma. Any non-OpenMP compiler will ignore this pragma.

• directives are commands in OpenMP that will tell the compiler to do some action. For 
now, we will only use directives that allow the compiler to parallelize our code

Syntax
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OPENMP

Fork Join Model

• OpenMP uses the fork-join model of parallel execution. 
All OpenMP programs begin as a single process: the 
master thread. The master thread executes sequentially 
until the first parallel region construct is encountered.

• FORK: the master thread then creates a team of parallel 
threads. The statements in the program that are 
enclosed by the parallel region construct are then 
executed in parallel among the various team threads.

• JOIN: When the team threads complete the statements 
in the parallel region construct, they synchronize and 
terminate, leaving only the master thread.

Fork Join Model
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OPENMP

PARALLEL Directive

• Spawns a team of threads

• Execution continues redundantly on all threads of 
the team.

• All threads join at the end and the master thread 
continues execution.

Parallel Region
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//Include the header file
#include <omp.h>

main(int argc, char *argv[]) {

int nthreads;

/* Fork a team of threads*/
#pragma omp parallel

{

/* Obtain and print thread id */
printf("Hello World from thread = %d\n", omp_get_thread_num());

/* Only master thread does this */
if (omp_get_thread_num() == 0) 
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

}  /* All threads join master thread and terminate */
}

OpenMP Parallel Region

Include Header File

• Spawns parallel region

• Get Thread Id

C - Syntax
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program hello
integer :: omp_rank

!$omp parallel private(omp_rank)

omp_rank = omp_get_thread_num()
print *, 'Hello world! by thread ', omp_rank

!$omp end parallel

end program hello

OpenMP Parallel Region

• Spawns parallel region

• Get Thread Id

Fortran - Syntax
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OPENMP

FOR/DO (Loop) Directive

• Divides (“workshares”) the iterations of the next loop 
across the threads in the team

• How the iterations are divided is determined by a 
schedule.

Worksharing

//Create a team of threads
#pragma omp parallel
{
//workshare this loop across those threads.

#pragma omp for
for (i=0; i < N; i++)

c[i] = a[i] + b[i];

}   /* end of parallel region */

!Create a team of threads
!$omp parallel
!workshare this loop across those threads.

!$omp do
do i=1,N

< loop code >
end do

!$omp end parallel

FortranC/C++



TARGETING THE GPU
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OPENMP

TARGET Directive

• Offloads execution and associated data from 
the CPU to the GPU

• The target device owns the data, accesses by 
the CPU during the execution of the target 
region are forbidden.

• Data used within the region may be implicitly or 
explicitly mapped to the device.

• All of OpenMP is allowed within target regions, 
but only a subset will run well on GPUs.

Target Offloading

#pragma omp target 

{ 

#pragma omp parallel for reduction(max:error) 

for( int j = 1; j < n-1; j++) {

…

}

} 

!Moves this region of code to the GPU and implicitly maps data.

!$omp target

!$omp parallel for

do i=2,N-1

ANew(i) = A (i-1) + A(i+1)

end do

!$omp end target 

C/C++

Fortran
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OPENMP

Teams Directive

• To better utilize the GPU resources, use many thread 
teams via the TEAMS directive.

• Spawns 1 or more thread teams with the same number 
of threads 

• Execution continues on the master threads of each team
(redundantly)

• No synchronization between teams

Teams



14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Distribute Directive

• Distributes the iterations of the next loop to the master 
threads of the teams.

• Iterations are distributed statically.

• There’s no guarantees about the order teams will 
execute.

• No guarantee that all teams will execute simultaneously

• Does not generate parallelism/worksharing within the 
thread teams.

Teams
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OPENMP

Loop Directive

• Expose more parallelism in a program is to allow a 
compiler to do the mapping onto the target architectures

• Similar to OpenACC, compiler translates the parallel 
region into a kernel that runs in parallel on the GPU

• The programmer specifies the loop regions to be 
parallelized by the compiler and the compilers parallelize 
loop across teams and threads using “teams loop” 
construct

Teams

#pragma omp target teams loop reduction(max:error) 
for( int j = 1; j < n-1; j++) {
#pragma omp loop reduction(max:error)
for( int i = 1; i < m-1; i++ ) {

Anew[j][i] = 0.25f * ( A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmaxf( error, fabsf(Anew[j][i]-
A[j][i]));

}
}
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OPENMP

TARGET Data Directive

• Offloads data from the CPU to the GPU, but not execution

• The target device owns the data, accesses by the CPU during the execution of contained target regions 
are forbidden.

• Useful for sharing data between TARGET regions

Data Offloading

#pragma omp target data map(to:A[:n]) map(from:ANew[:n])

{

#pragma omp parallel for

for( int j = 1; j < n-1; j++) {

ANew[j] = A [j-1] + A[j+1];

}

}

!$omp target data map(to:A(:)) map(from:ANew(:))

!$omp parallel do

do j=2,N-1

ANew(j) = A (j-1) + A(j+1)

end do

!$omp end target data
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Summary 

● omp target teams loop 

○ Recommended way

○ You can use num_teams and thread_limit clauses

● omp target loop  

○ Fully automatic

○ You cannot use num_teams / thread_limit

● omp target parallel loop

○ Uses only threads, and doesn’t use teams

○ Might be useful for light kernels

START Offloading “OMP LOOP” Three ways
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GPU Porting advice for OpenMP Programmers

● Re-order loops or transpose arrays to enable SIMD/SIMT accesses in outermost loops

● Use collapse(N) directives on loops to increase parallelism

● Replace critical sections with atomics

● Remove all I/O statements

● Remove memory allocation

● Use compiler feedback to identify and factor out unsupported or non-scalable OpenMP constructs and API calls

● Parallelism, Parallelism, Parallelism …
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Best Practices for OpenMP on GPUs

▪ Use the teams and distribute directive to expose all available parallelism

▪ Use the loop directive when the mapping to hardware isn’t obvious

▪ Aggressively collapse loops to increase available parallelism

▪ Use the target data directive and map clauses to reduce data movement between CPU and GPU

▪ …or just skip the target data directive and use managed memory

▪ Use OpenMP tasks to go asynchronous and better utilize the whole system

▪ Use host fallback (if clause) to generate host and device code

▪ Use accelerated libraries whenever possible

▪ Less is more with the NVIDIA compiler.  Being pedantic can reduce performance.



BUILD AND RUN THE CODE
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NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling 
and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP Target 
Offload onto GPU

• The command to compile C code is ‘nvc’

• The command to compile C++ code is ‘nvc++’

• The command to compile fortran code is ‘nvfortran’
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NVIDIA HPC SDK

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP C and Fortran

• -mp: compiler switch to enable processing of OpenMP directives and pragmas

• gpu: OpenMP directives are compiled for GPU execution plus multicore CPU fallback; this Beta feature is 
supported on Linux/x86 for NVIDIA V100 or later GPUs.

• multicore: OpenMP directives are compiled for multicore CPU execution only; this sub-option is the default.

nvc –mp=gpu main.c

nvfortran –Minfo=mp –mp=gpu main.f90
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BUILDING THE CODE

Use of loop in Fortran:

!$omp target teams loop 

do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown 

do ig_blk = 1, ig_blksize 

do ig = ig_blk, ncouls, ig_blksize

do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize

!expensive computation codes           

enddo 

enddo 

enddo 

enddo 

enddo

-Minfo shows more details

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop

42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel

Generating Tesla code

43, Loop parallelized across teams ! blockidx%x

44, Loop run sequentially

45, Loop run sequentially

46, Loop run sequentially

47, Loop parallelized across threads(128) ! 

threadidx%x

42, Generating Multicore code

43, Loop parallelized across threads
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RDF

for (int frame=0;frame<nconf;frame++) {

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

• Across Frames

Pseudo Code - C

• Find Distance

• Reduction



26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

• Map data to GPU

• Target offload construct

• Distribute inner loop

Pseudo Code - C

• Atomic construct

#pragma omp target data map(d_x[0:nconf*numatm],...)

for (int frame=0;frame<nconf;frame++) {

#pragma omp target teams distribute parallel for private(dx,dy,dz,r,ind)

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

#pragma omp atomic

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}
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RDF
Pseudo Code - Fortran

• Map data to GPU

• Target offload construct

• Distribute inner loop

• Atomic Construct

!$omp target data map(x(:,:), y (:,:), z (:,:), g (:))

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

!$omp target teams distribute parallel do private(dx,dy,dz,r,ind)

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

...

if(r<cut)then

!$acc atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo
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PRIVATE CLAUSE

int x = 5;
#pragma omp parallel
{

int x;
x = 3;
printf("local: x is %d\n", x);

}

int x = 5;

#pragma omp parallel private(x)
{

x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also dangerous

In the C/C++ language it is possible to declare variables inside a 
lexical scope ; roughly: inside curly braces. 

This concept extends to OpenMP parallel regions and directives: 
any variable declared in a block following an OpenMP directive 

will be local to the executing thread



KNOWN LIMITATIONS
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HPC SDK LIMITATION

• Not all functionality associated with loop is supported in the Beta release of OpenMP target 
offload. 

• The compilers support loop regions containing procedure calls as long as the callee does not 
contain OpenMP directives.
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