
N-WAYS GPU BOOTCAMP
OPENACC

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC

What to expect?

• Basic introduction to OpenACC directives

• HPC SDK Usage

• Portability across Multicore and GPU

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC is…

a directives-based

parallel programming model
designed for

performance and portability.

main()

{

<serial code>

#pragma acc kernels

{

<parallel code>

}

}

Add Simple Compiler Directive

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

• CPU, GPU, Manycore

• Performance portable

• Interoperable

• Single source

• Incremental

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SYNTAX

A pragma in C/C++ gives instructions to the compiler on how to compile the code. Compilers
that do not understand a particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the compiler in
it compilation of the code and can be freely ignored.

“acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#pragma acc parallel{
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang gang

gang gang

gang

gang

gangloop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

}

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}
The loop directive

informs the compiler
which loops to

parallelize.

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

Use a parallel directive to mark a region of code
where you want parallel execution to occur

This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

The loop directive is used to instruct the compiler
to parallelize the iterations of the next loop to run
across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N

a(i) = 0
end do

!$acc end parallel

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL LOOP DIRECTIVE
Combined directive for parallelising a single loop

This pattern is so common that you can do all of
this in a single line of code

In this example, the parallel loop directive applies
to the next loop

This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)

a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N

a(i) = 0
end do

BUILD AND RUN THE CODE

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling
and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenACC C and
Fortran

• The command to compile C code is ‘nvc’

• The command to compile C++ code is ‘nvc++’

• The command to compile Fortran code is ‘nvfortran’

nvc –fast –Minfo=accel –ta=tesla:managed main.c nvfortran –fast –Minfo=accel –ta=tesla:managed main.f90

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

14

$ nvc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

$ nvc -fast -ta=tesla:managed -Minfo=accel rdf.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copy(error)

66, Loop is parallelizable

-Minfo shows more details

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++) {

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

• Across Frames

Pseudo Code - C

• Find Distance

• Reduction

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

• Parallel loop construct

Pseudo Code - C

• Atomic construct

for (int frame=0;frame<nconf;frame++) {

#pragma acc parallel loop

for(int id1=0;id1<numatm;id1++) {

for(int id2=0;id2<numatm;id2++) {

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

#pragma acc atomic

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF
Pseudo Code - Fortran

• Parallel Loop construct

• Atomic Construct

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

!$acc parallel loop

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

...

if(r<cut)then

!$acc atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://www.openacc.org/get-started

https://developer.nvidia.com/hpc-sdk

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Memory management

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as

“managed memory.”
CUDA UNIFIED MEMORY

CPU and GPU memories are
combined into a single, shared pool

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MANAGED MEMORY

• The programmer may be able to get better
performance by manually handling data
transfers

• Memory allocation/deallocation takes longer
with managed memory

Limitations

With Managed Memory

Managed Memory

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC DATA DIRECTIVE

The data directive defines a lifetime
for data on the device beyond
individual loops

During the region data is essentially
“owned by” the accelerator

Data clauses express shape and data
movement for the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

27
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Action

Host Memory Device memory

A B C

Allocate A
on

device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
deviceExecute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

28
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Acknowledgment

Copyright © 2022 OpenACC-Standard.org. This material is released by OpenACC-
Standard.org, in collaboration with NVIDIA Corporation, under the Creative Commons
Attribution 4.0 International (CC BY 4.0). These materials may include references to
hardware and software developed by other entities; all applicable licensing and
copyrights apply.

http://openacc-standard.org/
http://openacc-standard.org/
http://openacc-standard.org/

WWW.OPENHACKATHONS.ORG

Learn more at

	Slide 1: N-WAYS GPU BOOTCAMP OPENACC
	Slide 2: OPENACC
	Slide 3
	Slide 4
	Slide 5: OpenACC Directives
	Slide 6: OPENACC SYNTAX
	Slide 7: OPENACC PARALLEL DIRECTIVE
	Slide 8: OPENACC PARALLEL DIRECTIVE
	Slide 9: OPENACC PARALLEL DIRECTIVE
	Slide 10: OPENACC PARALLEL DIRECTIVE
	Slide 11: OPENACC PARALLEL LOOP DIRECTIVE
	Slide 12: BUILD AND RUN THE CODE
	Slide 13: NVIDIA HPC SDK
	Slide 14: BUILDING THE CODE
	Slide 15: RDF
	Slide 16: RDF
	Slide 17: RDF
	Slide 19: REFERENCES
	Slide 20: Memory management
	Slide 21: CUDA UNIFIED MEMORY
	Slide 22: MANAGED MEMORY
	Slide 23: DATA CLAUSES
	Slide 24: ARRAY SHAPING
	Slide 25: ARRAY SHAPING (CONT.)
	Slide 26: OPENACC DATA DIRECTIVE
	Slide 27: STRUCTURED DATA DIRECTIVE
	Slide 28: Acknowledgment
	Slide 29: WWW.OPENHACKATHONS.ORG

