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RAG - Overview

What will you see today...
Theoretical Overview - 
Retreaval Augmented Generation:

Discussion about the inner workings of 
RAG, in order to understand what a:

● An Embedding Model
● A Vector Database
● A Large Language Model Engine

and
● REST 

is and how we can orchistrate them. 

● Practical I:
Scholary implementation without 3rd 
party tools fostering in depth 
understanding. 

● Discussion about the implementation 
in Practical I and its shorcomings

● Practical II: 
Implementation using contemporay 
tools such as LangChain, ChromaDB 
etc.



RAG Introduction



Why RAG

Include Information Outside the 
LLM Training Dataset 

Perform Prompt Engineering on 
Steriods

RAG allows us to augment an LLM 
prompt with information outside of what 
was stored / apprehended in the LLMs 
weights during training. 

It is the perfect tool to combine the 
power of databases / search engines 
with the power of LLMs.

It allows one to make ones own data 
available to the LLM and built custom 
chatbots with in house data.  



Typical RAG Components

User Facing Interface
A typical RAG system acts using a 
chatbot like interface. A human is 
presented with an interface to ask 
questions, give commands, brief 
converse with the RAG-LLM machinery.

The importance here is also that the RAG 
process keeps track of the questions as 
well as of the answers in order to 
simulate a conversation, and allow the 
LLM to «remember» past questions and 
answers. 



Typical RAG Components

2/ Embedding (Model)
For the sake of fast information retrieval 
most RAG implementations use so called 
embedding models. 

Each human question asked is 
transformed into an embedding. This 
embedding is than used in order to 
efficiently query data in a database.

The embedding shall encode the 
semantics of the query. It allows us to 
find knowledge in a database with 
similar semantics.



Typical RAG Components

2/ How do Embeddings Work

2 1 0.5 2 1 1 2 1.5 0.5 1

2 2 4 3 2 1 2 1.5 0.5 1

Text A: The mother searched her kids at school

Text B: The mother searched her kids at the kindergarden

Embedding A:

Embedding B:

Embedding models create vectors from text phrases which shall represent the inherent 
semantics of the Text. Semantically similar phrases shall be represented by «similar» vectors. 



Typical RAG Components

3/ Phrase Distance Measure
In order to “retrieve” phrases with similar 
semantics in a database we have to 
define a Phrase Distance Measure (PDM):

The PDM is a composition of different 
factors: 

For phrases p1 and p2:

the PDM shall yield d, a scalar discribing
how “semantically” distance p1 and p2 
are.



Typical RAG Components

3/ Phrase Distance Measure
In general the PDM is a composition of:

● The Tokenizer
● The Embedding Model
● The Distance Function

The most common Distance Function 
used is the Cosine Distance:



Typical RAG Components

3/ Phrase Distance Measure
The Cosine Distance:

is efficient to compare vectors in high 
dimensional spaces, which is not the 
case for the classical Eucledian L2 or 
Manhatten distance L1.

Semantically similar texts shall have a 
distance close to +/-1, while dissimlar 
texts have a distance close to 0.



Typical RAG Components

4/ The Vector Database
LLMs have limited context sizes. As such 
we can not deliver the whole information 
at once, ( even if the data is stored in 
single large document ) to the LLM. 

As such we create slices of adequatily 
sized texts. For each of these text slices 
we create embeddings. 

Semantically similar slices, in general a 
bunch of them, shall be selected and 
added to the prompt, to be later 
processed by the LLM together with the 
query. 



Typical RAG Components

5/ The Prompt Assembly
The prompt is key to every RAG system:

The RAG process modifies the prompt, 
by injecting data into it, and delivering it 
as such to the LLM. 

RAG can therefore be considered as 
prompt engineering on steroids. 



Typical RAG Components

5/ The Prompt Assembly – What is a LLM ?
● A LLM is large language model, a 

ChatGPT like construct.
 

● It automatically generates text, 
correctly trained this text generation 
can result in conversation like chats.

● A large language model can predict 
the next “Token” from a series of prior 
“Tokens”.

● A “Token” is a piece of word, or has 
some special conversational 
properties. 
i.e. end-of-turn Token which hands 
over the conversation to the enquirer.

● LLMs are trained against a special 
conversational “Token” construct, 
described in the Chat Template.



Typical RAG Components

5/ The Prompt Assembly – Chat Template
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
{{ system_prompt }}
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
{{ user_msg }}
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
{{ model_answer }}
<|eot_id|>

User / RAG 
Client Supplied

LLM generated
until <|eot_id|>



Typical RAG Components

5/ The Prompt Assembly – Finished Prompt
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account: 
1. A new REST service for corporate weather data.
   The API works as follows . . . 
2. Cafeteria proposes new services and menus.
. . . 
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards 
eggs and bacon for breakfast. . . 
<|eot_id|>

User / RAG 
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected 
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question 
asked to the LLM



Typical RAG Components

5/ The Prompt Assembly – Enforce Factual Answers using RAG
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account: 
1. A new REST service for corporate weather data.
   The API works as follows . . . 
2. Cafeteria proposes new services and menus.
. . . 
IF THE ANSWER CAN NOT BE DERIVED FROM THE ABOVE
CONTEXT, REPLY THAT YOU DO NOT KNOW THE ANSWER.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards 
eggs and bacon for breakfast. . . 
<|eot_id|>

User / RAG 
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected 
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question 
asked to the LLM



Typical RAG Components

5/ The Prompt Assembly – Perform Self Reflection
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account: 
1. A new REST service for corporate weather data.
   The API works as follows . . . 
2. Cafeteria proposes new services and menus.
. . . 
IF THE ANSWER CAN NOT BE DERIVED FROM THE ABOVE
CONTEXT, REPLY THAT YOU DO NOT KNOW THE ANSWER.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards 
eggs and bacon for breakfast. . . 
<|eot_id|>

User / RAG 
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected 
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question 
asked to the LLM

Reinject first LLM Answer into 
the Prompt and ask for self 
correction. Only yield 2nd pass.



Typical RAG Components

5/ The LLM
Finally the large language model 
processes the supplied prompt and 
generates its output. 

The result is in generally appended to 
the next prompt, in order to provide 
history to the conversation. 

If the prompt, and conversation gets to 
large, (larger then the LLMs context 
window) one has to think about solutions 
about how to «compress» the prompt.
i.e. by asking the LLM to summerize the 
preceding conversation. 



Practical Setup

1/ Building A Vector Database
● A local RAG Application reads documents and 

transforms them to text. 
● In simple cases: direct transfer with tools like 

«pdftotext»
● More eloborate chains can be built. i.e. with 

image extraction and AI models to build 
descriptions from tables / graphs.

● The extracted text has to be split in tiny parts, to fit 
the context window. The split size, and also the 
overlap of the text passages, is to be 
parameterized.

● The Embedding Model is used create Embedding 
Vectors for each text passage to be stored in the 
Vector Database.

Vector 
Database

Local
RAG App

Local Document 
i.e. PDF to talk to

Embedding
Model

Large Language
Model



Practical Setup

2/ Performing a Query
● A local RAG Application reads in a human 

generated query. 
● An Embedding Vector, is created using an 

Embedding Model.
● The Vector Database is queried for 

“semantically close” text passages.
● The local RAG Applications builds from the 

user query and the returned documents the 
Prompt.

● The prompt is sent to the Large Language 
Model which provides an Answer.

Vector 
Database

Local
RAG App

Local Document 
i.e. PDF to talk to

Embedding
Model

Large Language
Model



Practical Setup

Bill of Materials – What do we Need
● LLM server, answering to prompts 

[ through a REST API ]
● A server that generates embeddings 

[ through a REST API ]
● A program that follows the 

conversation, queries the embedding 
server as needed and yields a prompt 
to the LLM comprising of: 
● Conversation History
● Retrieved Data (from a vector 

database)

Vector 
Database

Local
RAG App

Local Document 
i.e. PDF to talk to

Embedding
Model

Large Language
Model



Practical Setup

Bill of Materials – Typical
● Engine for Embedding and LLM model

● Llama.cpp 
● And/or run the model in python with 

torch, huggingface api. Implement 
REST by hand. 

● A Vector Database
● Use ChromaDB, Picone, etc.

● A program that follows the 
conversation, queries the embedding 
server as needed and yields a prompt 
to the LLM comprising of: 
● Use Langchain
● And/or Implement by Hand

Vector 
Database

Local
RAG App

Local Document 
i.e. PDF to talk to

Embedding
Model

Large Language
Model



The Art of RAG

Main Issues
● Even with vector databases getting 

the right information is hard.
● The prompt has to be carefully crafted 

for the proposed usecase. 
● The system has to be tested and 

validated.

The core challenge in building a 
performing RAG system is to optimize 
the retrieval process and to achieve a 
high accuracy in fetching the right 
documents for a given query. 



The Art of RAG

Evaluating a RAG system:
● There is no clear evaluation path for 

RAG and what works for you is 
definatly dependent on your use case. 

● Nevertheless we give you some hints 
on how to evaluate the performance of 
your RAG system, and its document 
retrieval process. 

Document retrieval primarily is linked to 
the quality of the phrase distance 
measure introduced earlier. 

The PDM is a cascade of the following 
steps: 
● Tokenization of phrase
● Building embeddings from theses 

tokens
● Evaluating a distance measure



The Art of RAG

Evaluating a RAG system:
● The PDM is evaluated in a multistage 

process

Embedding vectors are created.

Embedding vectors are compared and a 
distance is returned. 



The Art of RAG

Evaluating a RAG system – Finding the optimal PDM:
Finding the optimal PDM is hence a 
process of finding:

● the optimal Tokenizer.

● the optimal Embedding Model. 

● the optimal Distance Measure.

● Better PDMs should yield better 
document retrieval and hence, better 
LLM answers. 

The Tokenizer is often tied to the 
Embedding Model.

The Embedding Model is where we have 
the largest choice. How can we evaluate 
if we have a perfromant - in terms of 
compute power/retrieval accuracy -
embedding model ?

The optimal distance measure is in most 
cases the cosine distance, but other 
solutions do exist.
 



The Art of RAG

Evaluating a RAG system – Hand Annotated Datasets
Hand Annotated Datasets:

● MTEB, BEIR, etc. Dataset
Specially crafted to yield documents to 
supplied questions.

● Better PDMs should yield better 
scores. 

● Hugging Face leaderboard
https://huggingface.co/spaces/mteb/leade
rboard

In practice new models incorporate such 
datasets in their training process, yielding 
the right embeddings for optimal 
retrieval on the BEIR dataset, but 
probably failing in your specific usecase.

Hence, always validate your usecase 
using in house experts.
 

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


The Art of RAG

Evaluating a RAG system 
The Silhouette / Distance Matrix Correlation Method
You need a known dataset of semantically 
close and semantically distant phrases

i.e. articles about the same topic written by 
different authors. ( semantically close = 
same meaning ) 

Articles about different topics ( semantically 
distant = different meaning )

You verify that: 

Same meaning is close in distance

Different meaning is far in distance

The advantage of this method is that the 
dataset to be used for this method can be 
relatively small.

You can use your in House data. 
i.e: 
Medical records with the same outcome 
written by different doctors (semantically 
similar)
vs. 
Medial records with different outcomes
(semantically different)
 



The Art of RAG

Evaluating a RAG system - Distance Matrix Correlation 

Optimal if you see something like green 
squares in yellow:

Green is semantically close texts.

Yellow are semantically different texts.

Here printed for 20 different news 
articles, written by 10 different outlets.

Hence,
10 times the same semantic content, for
20 different writing styles.  



The Art of RAG

Evaluating a RAG system - Distance Matrix Correlation 

You can now create an artifical matrix, 
and set distances for

semantically smiliar articles = 0
semantically different articles = 1

And caculate the pearson correlation 
between the distance matrix for a model 
in quesion, and the optimal created one.

The closer the correlation is to 1 the 
better your semantic differences are 
represented by the embedding model. 



The Art of RAG

Evaluating a RAG system – Silhouette Index

Normalized sum of inter cluster distances.
Distances between phrases of same meaning.

Normalized sum of intra cluster distances.
Distances between phrases of different meaning.

If intra-cluster distances >> inter-cluster distances, which
is what we want S shall be close to 1



The Art of RAG

Evaluating a RAG system – Using Both Indices
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Further IDEAS

Things that you can further do with your RAG system:
● Incorporate texts from all kinds of databases, 

with other retrieval systems than vector 
databases:
● SQL based search
● GRAPH based search

● Use search engine based search: i.e. using 
Apache Lucene:  https://lucene.apache.org

● Perform web searches from queries and include 
their results in the prompt. 

● What you include in the prompt is limitled only by 
the context size of your LLM

https://lucene.apache.org/


STAY IN TOUCH

@eurocc_austriaEuroCC Austria eurocc-austria.at
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