
Retreaval Augmented
Generation

Thomas Haschka,
Simeon Harrison, Martin Pfister

RAG - Overview

What will you see today...
Theoretical Overview -
Retreaval Augmented Generation:

Discussion about the inner workings of
RAG, in order to understand what a:

● An Embedding Model
● A Vector Database
● A Large Language Model Engine

and
● REST

is and how we can orchistrate them.

● Practical I:
Scholary implementation without 3rd
party tools fostering in depth
understanding.

● Discussion about the implementation
in Practical I and its shorcomings

● Practical II:
Implementation using contemporay
tools such as LangChain, ChromaDB
etc.

RAG Introduction

Why RAG

Include Information Outside the
LLM Training Dataset

Perform Prompt Engineering on
Steriods

RAG allows us to augment an LLM
prompt with information outside of what
was stored / apprehended in the LLMs
weights during training.

It is the perfect tool to combine the
power of databases / search engines
with the power of LLMs.

It allows one to make ones own data
available to the LLM and built custom
chatbots with in house data.

Typical RAG Components

User Facing Interface
A typical RAG system acts using a
chatbot like interface. A human is
presented with an interface to ask
questions, give commands, brief
converse with the RAG-LLM machinery.

The importance here is also that the RAG
process keeps track of the questions as
well as of the answers in order to
simulate a conversation, and allow the
LLM to «remember» past questions and
answers.

Typical RAG Components

2/ Embedding (Model)
For the sake of fast information retrieval
most RAG implementations use so called
embedding models.

Each human question asked is
transformed into an embedding. This
embedding is than used in order to
efficiently query data in a database.

The embedding shall encode the
semantics of the query. It allows us to
find knowledge in a database with
similar semantics.

Typical RAG Components

2/ How do Embeddings Work

2 1 0.5 2 1 1 2 1.5 0.5 1

2 2 4 3 2 1 2 1.5 0.5 1

Text A: The mother searched her kids at school

Text B: The mother searched her kids at the kindergarden

Embedding A:

Embedding B:

Embedding models create vectors from text phrases which shall represent the inherent
semantics of the Text. Semantically similar phrases shall be represented by «similar» vectors.

Typical RAG Components

3/ Phrase Distance Measure
In order to “retrieve” phrases with similar
semantics in a database we have to
define a Phrase Distance Measure (PDM):

The PDM is a composition of different
factors:

For phrases p1 and p2:

the PDM shall yield d, a scalar discribing
how “semantically” distance p1 and p2
are.

Typical RAG Components

3/ Phrase Distance Measure
In general the PDM is a composition of:

● The Tokenizer
● The Embedding Model
● The Distance Function

The most common Distance Function
used is the Cosine Distance:

Typical RAG Components

3/ Phrase Distance Measure
The Cosine Distance:

is efficient to compare vectors in high
dimensional spaces, which is not the
case for the classical Eucledian L2 or
Manhatten distance L1.

Semantically similar texts shall have a
distance close to +/-1, while dissimlar
texts have a distance close to 0.

Typical RAG Components

4/ The Vector Database
LLMs have limited context sizes. As such
we can not deliver the whole information
at once, (even if the data is stored in
single large document) to the LLM.

As such we create slices of adequatily
sized texts. For each of these text slices
we create embeddings.

Semantically similar slices, in general a
bunch of them, shall be selected and
added to the prompt, to be later
processed by the LLM together with the
query.

Typical RAG Components

5/ The Prompt Assembly
The prompt is key to every RAG system:

The RAG process modifies the prompt,
by injecting data into it, and delivering it
as such to the LLM.

RAG can therefore be considered as
prompt engineering on steroids.

Typical RAG Components

5/ The Prompt Assembly – What is a LLM ?
● A LLM is large language model, a

ChatGPT like construct.

● It automatically generates text,
correctly trained this text generation
can result in conversation like chats.

● A large language model can predict
the next “Token” from a series of prior
“Tokens”.

● A “Token” is a piece of word, or has
some special conversational
properties.
i.e. end-of-turn Token which hands
over the conversation to the enquirer.

● LLMs are trained against a special
conversational “Token” construct,
described in the Chat Template.

Typical RAG Components

5/ The Prompt Assembly – Chat Template
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
{{ system_prompt }}
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
{{ user_msg }}
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
{{ model_answer }}
<|eot_id|>

User / RAG
Client Supplied

LLM generated
until <|eot_id|>

Typical RAG Components

5/ The Prompt Assembly – Finished Prompt
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account:
1. A new REST service for corporate weather data.
 The API works as follows . . .
2. Cafeteria proposes new services and menus.
. . .
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards
eggs and bacon for breakfast. . .
<|eot_id|>

User / RAG
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question
asked to the LLM

Typical RAG Components

5/ The Prompt Assembly – Enforce Factual Answers using RAG
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account:
1. A new REST service for corporate weather data.
 The API works as follows . . .
2. Cafeteria proposes new services and menus.
. . .
IF THE ANSWER CAN NOT BE DERIVED FROM THE ABOVE
CONTEXT, REPLY THAT YOU DO NOT KNOW THE ANSWER.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards
eggs and bacon for breakfast. . .
<|eot_id|>

User / RAG
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question
asked to the LLM

Typical RAG Components

5/ The Prompt Assembly – Perform Self Reflection
<|begin_of_text|>

<|start_header_id|>system<|end_header_id|>
You are a kind chatbot trying to answer to
the users input as accurate as you can.
Take the following contexts found in our database
into account:
1. A new REST service for corporate weather data.
 The API works as follows . . .
2. Cafeteria proposes new services and menus.
. . .
IF THE ANSWER CAN NOT BE DERIVED FROM THE ABOVE
CONTEXT, REPLY THAT YOU DO NOT KNOW THE ANSWER.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Please write a report about our new services.
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
A report on our new services:

The cafetaria offers from tomorrow onwards
eggs and bacon for breakfast. . .
<|eot_id|>

User / RAG
Client Supplied

LLM generated
until <|eot_id|>

RAG Data injected
into the prompt

Engineered Prompt to
enforce LLM behavoir

Human question
asked to the LLM

Reinject first LLM Answer into
the Prompt and ask for self
correction. Only yield 2nd pass.

Typical RAG Components

5/ The LLM
Finally the large language model
processes the supplied prompt and
generates its output.

The result is in generally appended to
the next prompt, in order to provide
history to the conversation.

If the prompt, and conversation gets to
large, (larger then the LLMs context
window) one has to think about solutions
about how to «compress» the prompt.
i.e. by asking the LLM to summerize the
preceding conversation.

Practical Setup

1/ Building A Vector Database
● A local RAG Application reads documents and

transforms them to text.
● In simple cases: direct transfer with tools like

«pdftotext»
● More eloborate chains can be built. i.e. with

image extraction and AI models to build
descriptions from tables / graphs.

● The extracted text has to be split in tiny parts, to fit
the context window. The split size, and also the
overlap of the text passages, is to be
parameterized.

● The Embedding Model is used create Embedding
Vectors for each text passage to be stored in the
Vector Database.

Vector
Database

Local
RAG App

Local Document
i.e. PDF to talk to

Embedding
Model

Large Language
Model

Practical Setup

2/ Performing a Query
● A local RAG Application reads in a human

generated query.
● An Embedding Vector, is created using an

Embedding Model.
● The Vector Database is queried for

“semantically close” text passages.
● The local RAG Applications builds from the

user query and the returned documents the
Prompt.

● The prompt is sent to the Large Language
Model which provides an Answer.

Vector
Database

Local
RAG App

Local Document
i.e. PDF to talk to

Embedding
Model

Large Language
Model

Practical Setup

Bill of Materials – What do we Need
● LLM server, answering to prompts

[through a REST API]
● A server that generates embeddings

[through a REST API]
● A program that follows the

conversation, queries the embedding
server as needed and yields a prompt
to the LLM comprising of:
● Conversation History
● Retrieved Data (from a vector

database)

Vector
Database

Local
RAG App

Local Document
i.e. PDF to talk to

Embedding
Model

Large Language
Model

Practical Setup

Bill of Materials – Typical
● Engine for Embedding and LLM model

● Llama.cpp
● And/or run the model in python with

torch, huggingface api. Implement
REST by hand.

● A Vector Database
● Use ChromaDB, Picone, etc.

● A program that follows the
conversation, queries the embedding
server as needed and yields a prompt
to the LLM comprising of:
● Use Langchain
● And/or Implement by Hand

Vector
Database

Local
RAG App

Local Document
i.e. PDF to talk to

Embedding
Model

Large Language
Model

The Art of RAG

Main Issues
● Even with vector databases getting

the right information is hard.
● The prompt has to be carefully crafted

for the proposed usecase.
● The system has to be tested and

validated.

The core challenge in building a
performing RAG system is to optimize
the retrieval process and to achieve a
high accuracy in fetching the right
documents for a given query.

The Art of RAG

Evaluating a RAG system:
● There is no clear evaluation path for

RAG and what works for you is
definatly dependent on your use case.

● Nevertheless we give you some hints
on how to evaluate the performance of
your RAG system, and its document
retrieval process.

Document retrieval primarily is linked to
the quality of the phrase distance
measure introduced earlier.

The PDM is a cascade of the following
steps:
● Tokenization of phrase
● Building embeddings from theses

tokens
● Evaluating a distance measure

The Art of RAG

Evaluating a RAG system:
● The PDM is evaluated in a multistage

process

Embedding vectors are created.

Embedding vectors are compared and a
distance is returned.

The Art of RAG

Evaluating a RAG system – Finding the optimal PDM:
Finding the optimal PDM is hence a
process of finding:

● the optimal Tokenizer.

● the optimal Embedding Model.

● the optimal Distance Measure.

● Better PDMs should yield better
document retrieval and hence, better
LLM answers.

The Tokenizer is often tied to the
Embedding Model.

The Embedding Model is where we have
the largest choice. How can we evaluate
if we have a perfromant - in terms of
compute power/retrieval accuracy -
embedding model ?

The optimal distance measure is in most
cases the cosine distance, but other
solutions do exist.

The Art of RAG

Evaluating a RAG system – Hand Annotated Datasets
Hand Annotated Datasets:

● MTEB, BEIR, etc. Dataset
Specially crafted to yield documents to
supplied questions.

● Better PDMs should yield better
scores.

● Hugging Face leaderboard
https://huggingface.co/spaces/mteb/leade
rboard

In practice new models incorporate such
datasets in their training process, yielding
the right embeddings for optimal
retrieval on the BEIR dataset, but
probably failing in your specific usecase.

Hence, always validate your usecase
using in house experts.

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

The Art of RAG

Evaluating a RAG system
The Silhouette / Distance Matrix Correlation Method
You need a known dataset of semantically
close and semantically distant phrases

i.e. articles about the same topic written by
different authors. (semantically close =
same meaning)

Articles about different topics (semantically
distant = different meaning)

You verify that:

Same meaning is close in distance

Different meaning is far in distance

The advantage of this method is that the
dataset to be used for this method can be
relatively small.

You can use your in House data.
i.e:
Medical records with the same outcome
written by different doctors (semantically
similar)
vs.
Medial records with different outcomes
(semantically different)

The Art of RAG

Evaluating a RAG system - Distance Matrix Correlation

Optimal if you see something like green
squares in yellow:

Green is semantically close texts.

Yellow are semantically different texts.

Here printed for 20 different news
articles, written by 10 different outlets.

Hence,
10 times the same semantic content, for
20 different writing styles.

The Art of RAG

Evaluating a RAG system - Distance Matrix Correlation

You can now create an artifical matrix,
and set distances for

semantically smiliar articles = 0
semantically different articles = 1

And caculate the pearson correlation
between the distance matrix for a model
in quesion, and the optimal created one.

The closer the correlation is to 1 the
better your semantic differences are
represented by the embedding model.

The Art of RAG

Evaluating a RAG system – Silhouette Index

Normalized sum of inter cluster distances.
Distances between phrases of same meaning.

Normalized sum of intra cluster distances.
Distances between phrases of different meaning.

If intra-cluster distances >> inter-cluster distances, which
is what we want S shall be close to 1

The Art of RAG

Evaluating a RAG system – Using Both Indices
D

is
ta

nc
e

M
at

rix
 C

om
pa

ris
on

Pe
ar

so
n

Co
rr

el
at

io
n

–
El

em
en

t W
is

e
w

ith
 O

pt
im

al
 D

is
ta

nc
e

M
at

rix

Silhouette Index Silhouette Index

Optimal Corner

Further IDEAS

Things that you can further do with your RAG system:
● Incorporate texts from all kinds of databases,

with other retrieval systems than vector
databases:
● SQL based search
● GRAPH based search

● Use search engine based search: i.e. using
Apache Lucene: https://lucene.apache.org

● Perform web searches from queries and include
their results in the prompt.

● What you include in the prompt is limitled only by
the context size of your LLM

https://lucene.apache.org/

STAY IN TOUCH

@eurocc_austriaEuroCC Austria eurocc-austria.at

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,
Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	58e3a497-868d-401d-97dc-f2dace65cdfc.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

