

The Rise of Machine Learning in Weather Prediction

Irene Schicker

November 13th, 2024

A revolution is a fundamental and lasting structural change in one or more systems, usually occurring abruptly or within a relatively short period.

	1980s – early 1990s	late 1990s - 2000s	2010s	2020er			
Innovationens	 Statistical post-processing (regression & neural networks) 3D-Var Data Assimilation Perturbation of initial conditions 	 4D-Var Data Assimilation Perturbation of initial conditions & model physics 	 Hybrid Data Assimilation (DA): AI for integrating various data 4D Ensemble-Var DA AI-based nowcasting Deep Learning for post- processing 	 Large Ensembles (50–100 members) Al-enhanced DA (e.g., variational autoencoder) Introduction of purely data-driven models 			
Resolutio	Spatial: 150-200 km Temporal: 6-12 hours Vertical: 10-20 levels Ensemble: introduced	Spatial : 100 km Temporal : 6 hours Vertical : 20-40 levels	Spatial : 10-25 km Temporal : 3-6 hours Vertical : 40-60 levels	Spatial : 10-25 km (global), 1-3 km(regional) Temporal : 1-6 hours, sub- hourly Vertical : 120+ levels			
	Adapted after A. Ahmadalipour, https://geoaiunpacked.substack.com/p/geoai-unpacked-2-ai-for-weather-						

How does a classical weather model work?

... complicated ... but worth it!

Do we see a(nother) revolution in weather forecasting?

	1980s – early 1990s	late 1990s - 2000s	2010s	2020er	2022 – today		
Innovationens	 Statistical post-processing (regression & neural networks) 3D-Var Data Assimilation Perturbation of initial conditions 	 4D-Var Data Assimilation Perturbation of initial conditions & model physics 	 Hybrid Data Assimilation (DA): AI for integrating various data 4D Ensemble-Var DA AI-based nowcasting Deep Learning for post- processing 	 Large Ensembles (50–100 members) Al-enhanced DA (e.g., variational autoencoder) Introduction of purely data-driven models 	The rise of AI Several companies (NVIDIA, HUAWEI, GOOGLE) are discovering meteorological data and starting to develop data- driven prediction models. ECMWF follows suit, along with others.		
Resolutio	Spatial: 150-200 km Temporal: 6-12 hours Vertical: 10-20 levels Ensemble: introduced	Spatial : 100 km Temporal : 6 hours Vertical: 20-40 levels	Spatial : 10-25 km Temporal : 3-6 hours Vertical : 40-60 levels	Spatial : 10-25 km (global), 1-3 km(regional) Temporal : 1-6 hours, sub- hourly Vertical : 120+ levels	Spatial: ca. 25 km (global), 1-3 km(regional), not all parameters Temporal: 1-6 hours Vertical: reduced Ensemble: next step		
	Adapted after A. Ahmadalipour, https://geoaiunpacked.substack.com/p/geoai-unpacked-2-ai-for-weather-						

ال **GeoSphere** (C Austria

Traditionally weather forecasts are generated by running NWP model – computer code that has been designed to represent the physical processes governing the evolution of the atmosphere. But can you produce a forecast without a NWP model?

(GeoSphere

Austria

Differences in classical and ML models in forecasting

Are there differences in classical and ML forecasts?

Who finds the physical model?

nico-by-no-aa-4/)

© 2024 European Center for Medium Parige Weather Forecessis (ECMWF) Source: www.eernwt.int Lisenee: CC IIY-NC-54.4.0 and ECMWF Terms of Dwe (https://apps.ecmvd.intidatawebilicer.cendor Centerol at 2024-0 OT105:0522.2022 © ECCMWF 0 2024 Latopase Can be for Medium Parage Weather Forecasts (E Source CC ENVICE A 10 and ECMMPT Same of Late (https://app CECENTRY A Start Extransic Control for Medium Range Weather Forecast Service were contended and ELEMANF Terms of Used Integrations Licenses (CE DY 4.6 and ELEMANF Terms of Used Integrations Control of Control

CECMWF

But... that was global, what about regional, comparable to LAMs?

ار **GeoSphere** مار Austria

Solutions (there are more):

Neural-LAM und Bris

Problem:

Global models (physical and esp. ML) are coarse, we need higher spatial

Neural-LAM An emulator of limited area models

Advantage: not a lot of training data needed, "relatively" easy to implement

Bris A stretched grid/zoomed AIFS version

Advantage: lots of different types of training data can be included (global, local)

0.0 4.5 9.0 13.5 18.0 22.5 27.0 10m wind speed (m/s)

44.19

Support: how can we use ML (and the new models) for applications?

ال **GeoSphere** کرد Austria

Detection of extreme events for weather extremes and application extremes (e.g. "Dunkelflaute")

... allowing us to issue severity predictions of events and supporting mitigation measures early onwards

Data-driven nowcasting and intra-day forecasts for wind, PV, and hydropower – meteorological support (traders, TSO, etc.)

IrradPhyDNet Forecast (1h-lead)

nowcasting of global irradiation for a region in Austria

Data-driven nowcasting and intra-day forecasts for wind, PV, and hydropower – meteorological support (traders, TSO, etc.)

+ loss functions fit for imbalanced regressions + per gridpoint- wise transformations and normalisations

Intra-day windspeed prediction ensemble optimized for extremes

Not shown: temperature and precipitation nowcasting

Hydropower predictions

کرد GeoSphere کرد Austria

PV, global irradiation, and (semi-)synthetic data

Use case Austria using IrradPhyDNet as extra feature 0.30 - USTM_sh Irrad+CAMS+PER - 22 ft 0.25 - 0.20 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.10 - 0.15 - 0.

Location post-processing – what the users need

Windspeed predictions/post-processing and aggregated per country

∂(GeoSphere

Austria

and for every turbine in a wind farm/region

Quality control of data and missing value replacement us clustering of similar turbines

Supporting weather, subsaisonal/saisonal, and climate

Building a base for climate/coarse prediction downscaling – generating "training" data/wind and solar altases using ML (interpolation/downscaling)

Downscaling S2S prediction and climate scenarios

Solution – where is the physical model?

© GeoSphere Austria

THANK YOU!

Projects @GeoSphere

- Atmol4REN-4Cast
- MEDEA
- AI4Wind and Wind4Future
- Destination Earth Extremes
- EnergyProtect
- PV4Community

- Al4Grids
- ReduceData
- EnergAlze
- AI-Prometheus
- HectoRenew
- MTGreen

Irene.schicker@geosphere.at