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Training the AIFS Machine Learning

%%%Iis highly accurate due to ERAS, a dataset of hourly states of the Earth's atmosphere since
1940

Sets of training data from ERA5 Example of training loop ML model

: ‘ Checks
Y INPUT
- accuracy
. —
against
OUTPUT output
Corrects
errors to
improve
accuracy

Each step of
the training loop
uses several
ERAS states

Predicts weather
based on physical
state of Earth after
learning from ERA5

Lang et al. (2024) arXiv preprint arXiv:2406.01465v1




Artificial Intelligence Forecasting System
TRAINING SCHEME - Step 2

WMSE - area-weighted mean squared error

Atmospheric state:
X(t), X(t-6h)

X(t+12h)
X(t+18h)

i )]

A AR predictions
e Up to rollout 12 (72
————— h Ou rS)
WMSE t+6h == =] == WMSE t+72h
< >

model is trained to produce forecast up to 72 hr ahead by aggregating the WMSE

ROLLOUT 1 -6h

ROLLOUT 12- 72hr
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Latest AIFS v0.2(1) — hybrid of graphs &
transformers

e Live from Jan 2024.

* Resolution 0.25 degrees (4x finer)

* New architecture.

* Encoder/decoder: graph attention.

* Processor: Transformer blocks and
windowed attention (attention across
regional bands).

Encoder

Decoder

Processor

httos://www.ecmwtf.int/en/about/media-centre/aifs-blog/2024/first-update-aifs
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2m temperature RMSE (K)

Verification of surface against observations

Northern hemisphere 2m-temperature
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Forecast skill TCs, 2022-2023:

Position error

Central pressure bias
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Case study: Wind storm Ingun~ _.......c.oooeeee.. D2
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Analysis

AIFS improved structure and location.
AIFS underestimated maximum windspeed.

Consistent with verification and other case
studies
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Meridional wind at 850 hPa for 1 January 2023 00 UTC date
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Ensemble Forecasts
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Toward ensembles

Initial Condition Uncertainty

Use the ensemble initial conditions to initialise the Al model compared with latest IFS ensemble (9km) (Lang
et al. 2023)

Spread: AIFSv0.2 No model uncertainty
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Similar approach taken in Bi et al. (2023) [Pangu], Pathak et al. (2023) [FourCastNet]
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Ensemble forecasts ...

a) Instead of a MSE loss, learn an ensemble via optimizing probabilistic scores
Ensemble initial

ndition :
conditions Random noise  Processor
- Encoder - Decoder
—» R
=, Random noise Processor
T e A R "
- Encoder - Decoder
——— EE—

)

200

for example:

- Stable diffusion -> Images

- Sora -> Video

- Gencast -> Weather
(Price et al. (2023))
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CRPS Scores

Preliminary results, ~ 1 deg resolution models (096)
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What do the ensemble members themselves look

like?

Forecast activity (measure of forecast smoothness)
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Sub-seasonal time scales

Mean absolute bias score cards — northern hemisphere
2003-2022 (all dates) 2008-2012 (in sample)
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Improved mean absolute bias

A Significant improvement (95%)

2018-2022 (out of sample)
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And there’s more to come...
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Al Earth System Model

Mean wave direction (14-day forecast)
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Study how to represent full Earth System model with land, ocean, sea-ice, waves and hydrology
components within the DestinE framework
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Can machine learning models do data assimilation or replace it?

Reason it can’t work: significant parts of the atmosphere are not directly observed.

Reason it may work: current data-assimilation approaches need to throw away significant data and make
significant approximations.
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McNally et al., arXiv:2407.15586, 2024.



Preliminary Results

(c) Target IASI channel 921 radiances
(c) Target AVHRR visible reflectances



How to get involved:
Open source data and code
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A Home / Charts catalogue

Q, Search products..

Range

[J Medium (15 days)
[] Extended (42 days)
[J Long (Months)
Type

[J Forecasts

[J Verification

Component

[J Surface

[J Atmosphere

Product type

High resolution forecast (HRES)
Ensemble forecast (ENS)
Combined (ENS + HRES)
Extreme forecast index

Point-based products

8B 00D0O0OO0O

Experimental: AIFS

Experimental: Machine learning models

OO

Atmospheric composition

Parameters
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Latest forecast =5
Experimental: AIFS (ECMWF) ML
model: Mean sea level pressure and
850 hPa wind speed

AIFS (ECMWF): a deep learning-based system
developed by ECMWEF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

Latest forecast =8

Experimental: AIFS (ECMWF) ML
model: 500 hPa geopotential height
and 850 hPa temperature

AIFS (ECMWF): a deep learning-based system
developed by ECMWEF It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

Latest forecast =l

Experimental: AIFS (ECMWF) ML
model: Mean sea level pressure and
200 hPa wind

AIFS (ECMWF): a deep learning-based system
developed by ECMWF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

IFS, AIFS and other machine learning models open to everyone!

Latest forecast =k

Experimental: AIFS (ECMWF) ML
model: Rain and mean sea level
pressure

AIFS (ECMWF): a deep learning-based system
developed by ECMWEF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

Latest forecast S

Experimental: AIFS (ECMWF) ML
model: Temperature and geopotential
at various pressure levels

AIFS (ECMWF): a deep learning-based system
developed by ECMWEF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Latest forecast =k

Experimental: AIFS (ECMWF) ML
model: 2 m temperature and 10 m
wind

AIFS (ECMWF): a deep learning-based system
developed by ECMWF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

Latest forecast =k
Experimental: AIFS (ECMWF) ML
model: Wind and geopotential heights
at various pressure levels

AIFS (ECMWF): a deep learning-based system
developed by ECMWF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

Latest forecast =

Experimental: AIFS (ECMWF) ML
model: Total column water

AIFS (ECMWF): a deep learning-based system
developed by ECMWEF. It is initialised with ECMWF
HRES analysis. AIFS operates at 0.25° resolution

https://charts.ecmwf.int/
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Anemoi and AIFS: Open Source Code

Aspiration

Set of tools, shared/co-developed
across Europe, and beyond, for
building data driven forecasting
systems.

Users can bring their data and pick a
suitable architecture and training
method.

More advanced users can add new
architectures and training methods.

Anemoi will be open source, with many
pieces already being open. J | |

_c EC MWF © ECMWF November 13, 2024




Al Weather Quest

g Who is it for? .................................. .

A global competition for the best- = No prior expertise in weather forecasting required. :
performing AI/ML models for sub-seasonal to : = Anyone who can leverage AlI/ML to improve weather

seasonal weather predictions. . predictions welcome. i

........................ .....................................................................-’

Why participate?

Gain global recognition for your work, increase your knowledge about Al/ML-based forecasting models, and make
connections with the best experts working on similar topics.

Interested? Contact olga.loegel@ecmwf.int.

(19/05/25! +1week +1week ... 18/08/25 17/11/25 16/02/26 18/05/26
-_-

Competition phase - Divided in seasons

Training phase Teams issue weekly forecasts based on their models

Teams prepare
their models Summer

2% Autumn @9 Winter ©9 Spring €6

Awards Awards

Awards

Awards
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Key References

AIFS:

Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F., Raoult, B., ... & Rabier, F. (2024). AIFS-
ECMWEF's data-driven forecasting system. arXiv preprint arXiv:2406.01465.

AIFS Ensembles:
https.//www.ecmwf.int/en/about/media-centre/aifs-blog/2024/enter-ensembles
https://www.ecmwf.int/en/newsletter/181/earth-system-science/data-driven-ensemble-forecasting-aifs

Anemoi:
https.//github.com/ecmwf/anemoi-datasets
https.//github.com/ecmwf/anemoi-graphs
https.//github.com/ecmwf/anemoi-models
https.//github.com/ecmwf/anemoi-training
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