
Tutorial 1: First Steps with CUDA

Siegfried Höfinger

VSC Research Center, Vienna University of Technology

October 28, 2024

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/notes-t1.pdf

https://tinyurl.com/cudafordummies/i/t/notes-t1.pdf

Outline

First Steps with CUDA

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute π from Random Numbers

Let us create a set of random points in the first quadrant, i.e. x , y ∈ [0, 1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N=100

y

x

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute π from Random Numbers

The ratio of partial areas of the unit circle to the unit square is r2
π

4
: 1 = π

4

Can approximate that ratio from counting points inside the unit circle and relating
them to N

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N=100

y

x

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute π from Random Numbers

The approximated ratio #dotsred/N times 4 will give an approximate value for π

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N=100

y

x

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute π from Random Numbers

Exercise

Q1) Look into pi_v0.c (the standard ANSI C version) and follow individual steps
implemented there. Compile it, run it, and probably modify it. Some of the
commented printf() statements can be re-activated for better understanding of
various data sets used.

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_v0.c

10 min

https://tinyurl.com/cudafordummies/i/t/pi_v0.c

First Steps with CUDA

A1) Just a straightforward implementation using x[] and y[] arrays of dimension N
to store random coordinates from the interval [0,1] and compute radii for each
of the points and store them into array r[]. When converting r[] values to int
we can directly use these resulting numbers to count all points outside the unit
circle.

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute π from Random Numbers

Exercise

Q2) Port the default implementation to the GPU using CUDA. The assumption is
that computing radii is the most expensive step in the entire algorithm. A
template, pi_template_v0.cu, can be used for a start.

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_template_v0.cu

15 min

https://tinyurl.com/cudafordummies/i/t/pi_template_v0.cu

First Steps with CUDA

A2) i) Writing a GPU kernel that replaces the loop where all radii,
r[i], were computed

ii) Replace the default memory allocation with CUDA-
managed unified memory

iii) Subsitute the loop over r[i] calculations with an appropriate
kernel launch using a kernel execution configuration of ap-
propriate size and shape

iv) Free the CUDA-managed unified memory in the end

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v0.cu

https://tinyurl.com/cudafordummies/i/t/pi_solution_v0.cu

First Steps with CUDA
Example: Compute π from Random Numbers

Exercise

Q3) In terms of accuracy the inital sample using N = 100 was not very convincing.
So let’s change this to higher values of N and see how the approximation of π
will change (hopefully improve). Once the ANSI C version is clear, do the same
thing for the CUDA version, starting with pi_template_v1.cu

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_v1.c

→ https://tinyurl.com/cudafordummies/i/t/pi_template_v1.cu

20 min

https://tinyurl.com/cudafordummies/i/t/pi_v1.c
https://tinyurl.com/cudafordummies/i/t/pi_template_v1.cu

First Steps with CUDA

A3) i) As expected increasing N will improve the quality of the
approximation of π

ii) Only with N = 108 the first 4 digits after the decimal point
become sort of converged

iii) Already early in the series of increasing N, we reach the
maximum number of threads allowed in the threadblock,
hence need to switch to the 2-level kernel execution config-
uration of a bunch of threadblocks on the blockgrid

iv) Threadblock dimensions need not necessarily fit as an inte-
gral multiple into N, so care must be taken to not refer to
non-existing array elements, e.g. via padding

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v1.cu

https://tinyurl.com/cudafordummies/i/t/pi_solution_v1.cu

First Steps with CUDA
Example: Compute π from Random Numbers

Exercise

Q4) Let us take the previous solution, pi_solution_v1.cu, as new template and try
to also include random number generation into the kernel code... there should
be appropriate device functions around somewhere, perhaps we can make use
of curand_uniform_double() ? For N = 500000000 what is the difference in
kernel runtimes when carrying out measurements with ’nsys nvprof’

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v1.cu

→ https://docs.nvidia.com/cuda/curand/device-api-overview.html

15 min

https://tinyurl.com/cudafordummies/i/t/pi_solution_v1.cu
https://docs.nvidia.com/cuda/curand/device-api-overview.html

First Steps with CUDA

A4) i) The kernel code becomes much faster now (approximately
2x) despite of having to do more work, ie also computing
random coordinates

ii) The quality of the approximation of π does not seem to be
compromised, however, the impression is that resulting ap-
proximations become larger than with the CPU-based ran-
dom number generator

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v2.cu

https://tinyurl.com/cudafordummies/i/t/pi_solution_v2.cu

First Steps with CUDA
Example: Compute π from Random Numbers

Exercise

Q5) Let us again take pi_solution_v2.cu as new template and try to carry out partial
sums at the level of threadblocks. In particular what shall be achieved is to off-
load the final step of evaluating all r[] elements already to the GPU so that
when coming back from the device the host code has only to sum up a minor
list of already existing partial solutions. For again N = 500000000 we want to
know whether the overall approximation of π has remained stable, the overall
execution time could be reduced and at what additional cost of kernel execution
time. Do we really need the atomicAdd() ?

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v2.cu

15 min

https://tinyurl.com/cudafordummies/i/t/pi_solution_v2.cu

First Steps with CUDA

A5) i) The quality of approximating π seems to be unchanged
ii) Several crucial — but time critical — changes in the kernel

code have made the latter a bit slower now, ≈ +0.08 s
iii) However, the overall benefit is largely compensating the

increased kernel execution times, i.e. user time was reduced
from 1.13 s to 0.74 s while system time changed from 7.51 s
to 6.46 s

iv) Unfortunately yes, we do need the atomicAdd() as easily
demonstrated from replacing it with an ordinary add oper-
ation

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v3.cu

https://tinyurl.com/cudafordummies/i/t/pi_solution_v3.cu

First Steps with CUDA
Example: Compute Coulomb Interaction for Human Oxyhaemoglobin, 1hho.pdb

GPUs have been revolutionary to
computational biology

In molecular dynamics simulations
(MD) several physical interactions are
taken into account (by force fields),
the most expensive of all being
Coulomb interaction.

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute Coulomb Interaction for Human Oxyhaemoglobin, 1hho.pdb

The structure (dimer) of human
oxyhemoglobin (1hho.pdb) consists of
287 residues (excluding heme), which
is 4383 atoms, all of them carrying a
partial charge.

Shall try to compute the full Coulomb
sum for that set of atomic charges.

AMBER ff:

VCoulomb =
N−1∑

i=1

N∑

j=i+1

qi qj

4πε0rij

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute Coulomb Interaction for Human Oxyhaemoglobin, 1hho.pdb

Exercise

Q6) Have a look at coulomb_v0.c (and perhaps the accompanying structure file
MOLPDB) and examine individual steps. Compile it, run it, and probably
check its logic and the resulting reference value.

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/coulomb_v0.c

→ https://tinyurl.com/cudafordummies/i/t/MOLPDB

10 min

https://tinyurl.com/cudafordummies/i/t/coulomb_v0.c
https://tinyurl.com/cudafordummies/i/t/MOLPDB

First Steps with CUDA

A6) Nothing special, just the straightforward implementation using x[], y[], z[] and
q[] arrays of dimension N to store locations of atoms and corresponding partial
charges. The computation of the full Coulomb sum is carried out in the standard
way using a double loop over unique i,j-pairs. The resulting -230.611048407
can be taken as reference for upcoming comparisons.

CUDA 4 Dummies — Oct 29-30, 2024

First Steps with CUDA
Example: Compute Coulomb Interaction for Human Oxyhaemoglobin, 1hho.pdb

Exercise

Q7) Port the default implementation to the GPU using CUDA. The idea is to have
individual threads carry out one particular partial sum over interacting parti-
cles j and let the host then finally add up these partial sums. A template,
coulomb_template_v0.cu, can be used for a start.

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/coulomb_template_v0.cu

20 min

https://tinyurl.com/cudafordummies/i/t/coulomb_template_v0.cu

First Steps with CUDA

A7) i) In the GPU kernel each thread carries out the inner loop
over j taking into account all potential interaction partners;
these partial results are stored to an extra array cp[]

ii) Replace the default memory allocation with CUDA-
managed unified memory, but pad the final sections

iii) Subsitute the double loop with an appropriate kernel call
covering all particles

iv) Have the host code sum up all partial sums received from
the device

v) Free the CUDA-managed unified memory in the end
vi) The result is again -230.611048407

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v0.cu

https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v0.cu

First Steps with CUDA
Example: Compute π from Random Numbers

Bonus Exercise 1

QB1) In case we do not need any of the basic data, x[], y[], r[], for any other purposes,
could we just off-load all steps to the GPU and just have the host code do the
final sum of all partial results ? That would be expected to be very fast because
variables could become thread(block)-local... Let’s take pi_solution_v3.cu as
template and again work with N = 500000000

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v3.cu

10 min

https://tinyurl.com/cudafordummies/i/t/pi_solution_v3.cu

First Steps with CUDA

AB1) i) The quality of approximating π hasn’t changed while many
of the cudaMallocManaged() calls were omitted and vari-
ables used locally instead

ii) User time was reduced from 1.61 s to 0.09 s while system
time changed from 5.67 s to 5.29 s and kernel execution
time decreased from 1.5123 s to 0.0078 s

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/pi_solution_v4.cu

https://tinyurl.com/cudafordummies/i/t/pi_solution_v4.cu

First Steps with CUDA
Example: Compute Coulomb Interaction for Human Oxyhaemoglobin, 1hho.pdb

Bonus Exercise 2

QB2) What is the introduced error if we convert all double variables to float. More-
over, what is the greatest drawback in terms of compute performance of this
current implementation ? Let’s take coulomb_solution_v0.cu as template.

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v0.cu

10 min

https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v0.cu

First Steps with CUDA

AB2) i) The full Coulomb sum has changed by -0.000340753 which
at first sight does not appear to be too terrible... however,
it’s way too much when considering that this is just the
situation of an isolated small protein (lacking solvation) at
a single point in time !

ii) A severe problem inherent in the current implementation
is a very asymmetric distribution of load across individual
threads in the threadblock (higher indices have significantly
reduced loops over interaction partners j),

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v1.cu

https://tinyurl.com/cudafordummies/i/t/coulomb_solution_v1.cu

	First Steps with CUDA

