
Introduction to GPU Computing with CUDA

Siegfried Höfinger

VSC Research Center, TU Wien

October 28, 2024

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/notes-l1.pdf

https://tinyurl.com/cudafordummies/i/l1/notes-l1.pdf

Outline

Current Situation — Glimpse into top500

Components

Historical

Consumer/Enterprise-Grade GPUs

CUDA — Basic Design Principles

Take Home Messages

CUDA 4 Dummies — Oct 29-30, 2024

Current Situation — Glimpse into top500

10
9

8
7

6
5

4
3

2
1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

Rank

P
e
rf

o
rm

a
n

c
e
 [

P
F

L
O

P
s
/s

]

HPC — 3rd pillar of
scientific discovery

CUDA 4 Dummies — Oct 29-30, 2024

→ PRACE Software Strategy for European Exascale Systems

https://www.scientific-computing.com/sites/default/files/content/white-paper/pdfs/PRACE-Software%20Strategy%20for%20European%20Exascale%20Systems-Paper-final.pdf

Current Situation — Glimpse into top500

10
9

8
7

6
5

4
3

2
1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

Rank

P
e
rf

o
rm

a
n

c
e
 [

P
F

L
O

P
s
/s

]

HPC — 3rd pillar of
scientific discovery

Supercomputers —
frequently made of
GPUs !

CUDA 4 Dummies — Oct 29-30, 2024

→ PRACE Software Strategy for European Exascale Systems

https://www.scientific-computing.com/sites/default/files/content/white-paper/pdfs/PRACE-Software%20Strategy%20for%20European%20Exascale%20Systems-Paper-final.pdf

Current Situation — Glimpse into top500

10
9

8
7

6
5

4
3

2
1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

Rank

P
e
rf

o
rm

a
n

c
e
 [

P
F

L
O

P
s
/s

]

HPC — 3rd pillar of
scientific discovery

Supercomputers —
frequently made of
GPUs !

Trend is likely to
continue

CUDA 4 Dummies — Oct 29-30, 2024

→ PRACE Software Strategy for European Exascale Systems

https://www.scientific-computing.com/sites/default/files/content/white-paper/pdfs/PRACE-Software%20Strategy%20for%20European%20Exascale%20Systems-Paper-final.pdf

Current Situation — Glimpse into top500

10
9

8
7

6
5

4
3

2
1

 0

 10

 20

 30

 40

 50

 60

 70

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

Rank

P
o

w
e
r

E
ff

ic
ie

n
c
y
 [

G
F

L
O

P
s
/W

a
tt

]

HPC — 3rd pillar of
scientific discovery

Supercomputers —
frequently made of
GPUs !

Trend is likely to
continue

Power efficiency is key

CUDA 4 Dummies — Oct 29-30, 2024

→ PRACE Software Strategy for European Exascale Systems

https://www.scientific-computing.com/sites/default/files/content/white-paper/pdfs/PRACE-Software%20Strategy%20for%20European%20Exascale%20Systems-Paper-final.pdf

Components

GPU/Accelerator:

Specs (H100):
15872 cores, clock freq 1.8 GHz, 80 GB HBM3, 3.4 TB/s, FP64/FP32/TC-
FP64 34/67/67 TFLOPs/s, TDP 700 W, PCIe5/NVLink3 128/900 GB/s;

HPC/Server:

Specs (AMD EPYC 3rd Milan):
64 cores, clock freq 2.0 GHz, up to 2048 GB DDR4, up to 205 GB/s, FP64
2.3 TFLOPs/s, TDP 225 W;

CUDA 4 Dummies — Oct 29-30, 2024

→ https://en.wikipedia.org/wiki/Supercomputer

→ https://www.nvidia.com/en-us/data-center/h100

https://en.wikipedia.org/wiki/Supercomputer
https://www.nvidia.com/en-us/data-center/h100

Components

GPU/Accelerator:

Specs (H100):
15872 cores, clock freq 1.8 GHz, 80 GB HBM3, 3.4 TB/s, FP64/FP32/TC-
FP64 34/67/67 TFLOPs/s, TDP 700 W, PCIe5/NVLink3 128/900 GB/s;

HPC/Server:

Specs (AMD EPYC 3rd Milan):
64 cores, clock freq 2.0 GHz, up to 2048 GB DDR4, up to 205 GB/s, FP64
2.3 TFLOPs/s, TDP 225 W;

Identical basic components

CUDA 4 Dummies — Oct 29-30, 2024

→ https://en.wikipedia.org/wiki/Supercomputer

→ https://www.nvidia.com/en-us/data-center/h100

https://en.wikipedia.org/wiki/Supercomputer
https://www.nvidia.com/en-us/data-center/h100

Components

GPU/Accelerator:

Specs (H100):
15872 cores, clock freq 1.8 GHz, 80 GB HBM3, 3.4 TB/s, FP64/FP32/TC-
FP64 34/67/67 TFLOPs/s, TDP 700 W, PCIe5/NVLink3 128/900 GB/s;

HPC/Server:

Specs (AMD EPYC 3rd Milan):
64 cores, clock freq 2.0 GHz, up to 2048 GB DDR4, up to 205 GB/s, FP64
2.3 TFLOPs/s, TDP 225 W;

Identical basic components
GPU has much more cores, but less RAM

CUDA 4 Dummies — Oct 29-30, 2024

→ https://en.wikipedia.org/wiki/Supercomputer

→ https://www.nvidia.com/en-us/data-center/h100

https://en.wikipedia.org/wiki/Supercomputer
https://www.nvidia.com/en-us/data-center/h100

Components

GPU/Accelerator:

Specs (H100):
15872 cores, clock freq 1.8 GHz, 80 GB HBM3, 3.4 TB/s, FP64/FP32/TC-
FP64 34/67/67 TFLOPs/s, TDP 700 W, PCIe5/NVLink3 128/900 GB/s;

HPC/Server:

Specs (AMD EPYC 3rd Milan):
64 cores, clock freq 2.0 GHz, up to 2048 GB DDR4, up to 205 GB/s, FP64
2.3 TFLOPs/s, TDP 225 W;

Identical basic components
GPU has much more cores, but less RAM
No network on the GPU (massive parallelism onboard)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://en.wikipedia.org/wiki/Supercomputer

→ https://www.nvidia.com/en-us/data-center/h100

https://en.wikipedia.org/wiki/Supercomputer
https://www.nvidia.com/en-us/data-center/h100

Historical

Fermi

2010
Tsubame 2.0 (M2050)

GSIC/TITech
2.3 PFLOPs/s

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com

https://www.nvidia.com

Historical

Fermi

2010
Tsubame 2.0 (M2050)

GSIC/TITech
2.3 PFLOPs/s

Kepler

2012
Titan (k20x)

ORNL
17.6 PFLOPs/s
⋆ 3x #cores (1536)
⋆ improved power efficiency

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com

https://www.nvidia.com

Historical

Fermi

2010
Tsubame 2.0 (M2050)

GSIC/TITech
2.3 PFLOPs/s

Kepler

2012
Titan (k20x)

ORNL
17.6 PFLOPs/s
⋆ 3x #cores (1536)
⋆ improved power efficiency

Pascal

2016
Piz Daint (P100)

CSCS
25.4 PFLOPs/s
⋆ NVLink, 5x PCIe bw
⋆ HBM2, 3x memory bw
⋆ Unified memory, multi-
GPU/CPU

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com

https://www.nvidia.com

Historical

Fermi

2010
Tsubame 2.0 (M2050)

GSIC/TITech
2.3 PFLOPs/s

Kepler

2012
Titan (k20x)

ORNL
17.6 PFLOPs/s
⋆ 3x #cores (1536)
⋆ improved power efficiency

Pascal

2016
Piz Daint (P100)

CSCS
25.4 PFLOPs/s
⋆ NVLink, 5x PCIe bw
⋆ HBM2, 3x memory bw
⋆ Unified memory, multi-
GPU/CPU

Volta

2018
Summit/Sierra (V100)

ORNL/LLNL
148.6/94.6 PFLOPs/s
⋆ NVLink2, 2x previous
⋆ AI, 640 tensor cores

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com

https://www.nvidia.com

Historical

Fermi

2010
Tsubame 2.0 (M2050)

GSIC/TITech
2.3 PFLOPs/s

Kepler

2012
Titan (k20x)

ORNL
17.6 PFLOPs/s
⋆ 3x #cores (1536)
⋆ improved power efficiency

Pascal

2016
Piz Daint (P100)

CSCS
25.4 PFLOPs/s
⋆ NVLink, 5x PCIe bw
⋆ HBM2, 3x memory bw
⋆ Unified memory, multi-
GPU/CPU

Volta

2018
Summit/Sierra (V100)

ORNL/LLNL
148.6/94.6 PFLOPs/s
⋆ NVLink2, 2x previous
⋆ AI, 640 tensor cores

Ampere

2020
Perlmutter/JuwelsBooster(A100)

NERSC/FZJ
64.6/44.1 PFLOPs/s (#5/8)
⋆ FP64@TC (19.5 TFLOPS/s)
⋆ all up by 1.5x
⋆ ≈25 GFLOPs/Watt (#7/11)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com

https://www.nvidia.com

Historical cont.

AMD Instinct MI250X

2022
Frontier/Lumi/Adastra(MI250X)

ORNL/CSC/GENCI-CINES
1102/152/46 PFLOPs/s
(#1/3/10)
⋆ FP64 (47.9 TFLOPS/s)
⋆ FP64@Mx (95.7
TFLOPS/s)
⋆ ≈50 GFLOPs/Watt
(#2/3/4)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.amd.com/en/products/server-accelerators/instinct-mi250x

https://www.amd.com/en/products/server-accelerators/instinct-mi250x

Historical cont.

AMD Instinct MI250X

2022
Frontier/Lumi/Adastra(MI250X)

ORNL/CSC/GENCI-CINES
1102/152/46 PFLOPs/s
(#1/3/10)
⋆ FP64 (47.9 TFLOPS/s)
⋆ FP64@Mx (95.7
TFLOPS/s)
⋆ ≈50 GFLOPs/Watt
(#2/3/4)

Intel Data Center GPU Max

2023
Aurora(Intel Ponte Vecchio)

ANL
1012 PFLOPs/s (#2)
⋆ FP64 (52 TFLOPS/s)
⋆ 26 GFLOPs/Watt (#42)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.amd.com/en/products/server-accelerators/instinct-mi250x

https://www.amd.com/en/products/server-accelerators/instinct-mi250x

Historical cont.

AMD Instinct MI250X

2022
Frontier/Lumi/Adastra(MI250X)

ORNL/CSC/GENCI-CINES
1102/152/46 PFLOPs/s
(#1/3/10)
⋆ FP64 (47.9 TFLOPS/s)
⋆ FP64@Mx (95.7
TFLOPS/s)
⋆ ≈50 GFLOPs/Watt
(#2/3/4)

Intel Data Center GPU Max

2023
Aurora(Intel Ponte Vecchio)

ANL
1012 PFLOPs/s (#2)
⋆ FP64 (52 TFLOPS/s)
⋆ 26 GFLOPs/Watt (#42)

Grace-Hopper

2024
Alps(H100)

CSCS
270 PFLOPs/s (#6)
⋆ FP64 (34 TFLOPS/s)
⋆ FP64@TC (67 TFLOPS/s)
⋆ 52 GFLOPs/Watt (#14)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.amd.com/en/products/server-accelerators/instinct-mi250x

https://www.amd.com/en/products/server-accelerators/instinct-mi250x

Historical cont.
Compute Capabilities

Version Number GPU Architecture

9.0 Hopper
8.9 Ada Lovelace
8.0 Ampere
7.5 Turing
7.x Volta
6.x Pascal
5.x Maxwell
3.x Kepler
2.x Fermi
1.x Tesla

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

Historical cont.
Compute Capabilities

Version Number GPU Architecture

9.0 Hopper
8.9 Ada Lovelace
8.0 Ampere
7.5 Turing
7.x Volta
6.x Pascal
5.x Maxwell
3.x Kepler
2.x Fermi
1.x Tesla

Major revision
number:
identifies
core architec-
ture/hardware
features

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

Historical cont.
Compute Capabilities

Version Number GPU Architecture

9.0 Hopper
8.9 Ada Lovelace
8.0 Ampere
7.5 Turing
7.x Volta
6.x Pascal
5.x Maxwell
3.x Kepler
2.x Fermi
1.x Tesla

Major revision
number:
identifies
core architec-
ture/hardware
features

Minor revision
number:
incremental up-
date to core ar-
chitecture, e.g.
Turing-Volta

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#application-compatibility

Consumer/Enterprise-Grade GPUs

Consumer grade: made for gaming, cheaper devices with lower specs (FP64,
HBM*) and prohibited 24x7 usage in datacentres (EULA change since 12/2017
affecting NVIDIA driver); GeForce, Titan, Tegra

Enterprise grade: heavy HPC workloads and large-scale AI, expensive (10:1)
high-end devices with certified top notch components and explicit warranty for
stable and reliable 24x7 operation; Tesla, Quadro, DGX/HGX

Academia perhaps fine; NVIDIA doesn’t want to ban non-commercial uses and
research, key question is what qualifies as a “data center”

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com/enterpriseservices

→ https://www.theregister.co.uk/2018/01/03/nvidia_server_gpus

https://www.nvidia.com/enterpriseservices
https://www.theregister.co.uk/2018/01/03/nvidia_server_gpus

Consumer/Enterprise-Grade GPUs cont.
Figuring Out Own Setup

cuda−zen sh@n3073−009 : ˜$ nvidia-smi

Thu Oct 19 21:26:10 2023

+---+

| NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 NVIDIA A100-PCI... Off | 00000000:01:00.0 Off | Off |

| N/A 41C P0 39W / 250W | 0MiB / 40960MiB | 0% Default |

| | | Disabled |

+-------------------------------+----------------------+----------------------+

| 1 NVIDIA A100-PCI... Off | 00000000:81:00.0 Off | Off |

| N/A 36C P0 39W / 250W | 0MiB / 40960MiB | 5% Default |

| | | Disabled |

+-------------------------------+----------------------+----------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

CUDA 4 Dummies — Oct 29-30, 2024

Consumer/Enterprise-Grade GPUs cont.
Figuring Out Own Setup cont.

cuda−zen sh@n3073−009 : ˜$ nvidia-smi topo --matrix

GPU0 GPU1 mlx5_0 CPU Affinity NUMA Affinity

GPU0 X SYS SYS 48-63,176-191 3

GPU1 SYS X SYS 112-127,240-255 7

mlx5_0 SYS SYS X

Legend:

X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

CUDA 4 Dummies — Oct 29-30, 2024

→ https://stackoverflow.com/questions/55364149/understanding-nvidia-smi-topo-m-output

https://stackoverflow.com/questions/55364149/understanding-nvidia-smi-topo-m-output

CUDA — Basic Design Principles
3 Basic Components

Driver

kernel modules:
nvidia.ko nvidia-uvm.ko

also includes libcuda.so

considers compute
capability !

CUDA Toolkit

nvcc cuda-gdb nsight...

libcudart.so
libcublas.so...

also considers compute
capability !

CUDA SDK

examples in 7
sub-directories

CUDA 4 Dummies — Oct 29-30, 2024

→ https://www.nvidia.com/Download/index.aspx?lang=en-us

→ https://developer.nvidia.com/cuda-gpus

→ https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

https://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

CUDA — Basic Design Principles cont.
Good to Know Facts

CUDA: Compute Uniform Device Architecture (NVIDIA 2006)

GPU programming model based on threads, shared memory and barrier
synchronization

Linux, Mac OS and Windows supported

Simple extensions to C functions (becoming kernels) to run on the GPU in parallel
as N independent CUDA threads

Multiple GPUs per host supported

CUDA the de-facto standard in HPC for science

CUDA uses simplified logic, more focus on ALU rather than out-of-order
execution, branch prediction etc

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/cuda-faq

https://developer.nvidia.com/cuda-faq

CUDA — Basic Design Principles cont.
Good to Know Facts cont.

SIMD operations, single instruction multiple data

CUDA programs can be called from C, C++, Fortran, Python...

PTX (parallel thread execution) format is forward-compatible with upcoming GPU

generations
*.cu PTX *.exenvcc cudart

driver

Provides a mini-HPC-cluster on the desktop-computer

Data movement over PCIe still critical

OpenCL (alternative API) supported too

Competitors, AMD (ATI), Intel

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/cuda-faq

https://developer.nvidia.com/cuda-faq

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Introduction

GPU specialized for compute-intensive, highly parallel computation

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Introduction

GPU specialized for compute-intensive, highly parallel computation

More transistors are dedicated to data processing rather than data caching and
flow control

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Introduction

GPU specialized for compute-intensive, highly parallel computation

More transistors are dedicated to data processing rather than data caching and
flow control

GPU is a highly parallel, multithreaded, manycore processor with very high
memory bandwidth

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Introduction

GPU specialized for compute-intensive, highly parallel computation

More transistors are dedicated to data processing rather than data caching and
flow control

GPU is a highly parallel, multithreaded, manycore processor with very high
memory bandwidth

Power efficiency is key — eco-friendly computing

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model

// kernel definition;
_ _global_ _ void VecAdd(float *A, float *B, float *C)
{

int i;
i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// kernel invocation with N threads
N = 100;
VecAdd <<< 1, N >>> (A, B, C);
...

}

Single Thread Block Vector Addition

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model

// kernel definition;
_ _global_ _ void VecAdd(float *A, float *B, float *C)
{

int i;
i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// kernel invocation with N threads
N = 100;
VecAdd <<< 1, N >>> (A, B, C);
...

}

Single Thread Block Vector Addition
only 3 basic
extensions

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model

// kernel definition;
_ _global_ _ void VecAdd(float *A, float *B, float *C)
{

int i;
i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// kernel invocation with N threads
N = 100;
VecAdd <<< 1, N >>> (A, B, C);
...

}

Single Thread Block Vector Addition
only 3 basic
extensions

1) kernel dec-
laration speci-
fier

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model

// kernel definition;
_ _global_ _ void VecAdd(float *A, float *B, float *C)
{

int i;
i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// kernel invocation with N threads
N = 100;
VecAdd <<< 1, N >>> (A, B, C);
...

}

Single Thread Block Vector Addition
only 3 basic
extensions

1) kernel dec-
laration speci-
fier

2) kernel exe-
cution config-
uration

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model

// kernel definition;
_ _global_ _ void VecAdd(float *A, float *B, float *C)
{

int i;
i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// kernel invocation with N threads
N = 100;
VecAdd <<< 1, N >>> (A, B, C);
...

}

Single Thread Block Vector Addition
only 3 basic
extensions

1) kernel dec-
laration speci-
fier

2) kernel exe-
cution config-
uration

3) built-in
variables,
e.g. threa-
dIdx.x=0,1,2...

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_vector_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
Compile and Run and Monitor

cuda−zen sh@n3073−009 : ˜$ nvcc single_thread_block_vector_addition.cu
cuda−zen sh@n3073−009 : ˜$./a.out

0 100.000000

1 100.000000

2 100.000000

3 100.000000

4 100.000000

5 100.000000

6 100.000000

7 100.000000

8 100.000000

9 100.000000

10 100.000000

11 100.000000

...

99 100.000000

CUDA 4 Dummies — Oct 29-30, 2024

CUDA — Basic Design Principles cont.
Compile and Run and Monitor cont.

cuda−zen sh@n3073−009 : ˜$ watch -n 0.1 nvidia-smi

+---+

| NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 NVIDIA A100-PCI... Off | 00000000:01:00.0 Off | Off |

| N/A 34C P0 41W / 250W | 14MiB / 40960MiB | 3% Default |

| | | Disabled |

+-------------------------------+----------------------+----------------------+

| 1 NVIDIA A100-PCI... Off | 00000000:81:00.0 Off | Off |

| N/A 32C P0 42W / 250W | 2MiB / 40960MiB | 0% Default |

| | | Disabled |

+-------------------------------+----------------------+----------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| 0 N/A N/A 807767 C ./a.out 12MiB |

+---+

CUDA 4 Dummies — Oct 29-30, 2024

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

_ _global_ _ declares a function as being a GPU-kernel

1. executed on the device
2. callable from the host
3. also callable from the device for devices of compute capability ≥ 3.2

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

_ _global_ _ declares a function as being a GPU-kernel

1. executed on the device
2. callable from the host
3. also callable from the device for devices of compute capability ≥ 3.2

_ _host_ _ declares a function as being a host-function

1. executed on the host
2. callable from the host only
3. default when omitted

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

_ _global_ _ declares a function as being a GPU-kernel

1. executed on the device
2. callable from the host
3. also callable from the device for devices of compute capability ≥ 3.2

_ _host_ _ declares a function as being a host-function

1. executed on the host
2. callable from the host only
3. default when omitted

_ _device_ _ declares a function as being a GPU-only-function

1. executed on the device
2. callable from the device only

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

threadIdx.[x,y,z] may be one-dimensional, two-dimensional or three-dimensional
referring to a one-dimensional, two-dimensional or three-dimensional thread block

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

threadIdx.[x,y,z] may be one-dimensional, two-dimensional or three-dimensional
referring to a one-dimensional, two-dimensional or three-dimensional thread block

threadIdx.[x,y,z] provides a direct formal abstraction of domains, ie facilitates
straightforward reference to the elements of a vector, matrix, or a volume

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

threadIdx.[x,y,z] may be one-dimensional, two-dimensional or three-dimensional
referring to a one-dimensional, two-dimensional or three-dimensional thread block

threadIdx.[x,y,z] provides a direct formal abstraction of domains, ie facilitates
straightforward reference to the elements of a vector, matrix, or a volume

threadIdx.[x,y,z] for N threads goes from 0 to N-1

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

threadIdx.[x,y,z] may be one-dimensional, two-dimensional or three-dimensional
referring to a one-dimensional, two-dimensional or three-dimensional thread block

threadIdx.[x,y,z] provides a direct formal abstraction of domains, ie facilitates
straightforward reference to the elements of a vector, matrix, or a volume

threadIdx.[x,y,z] for N threads goes from 0 to N-1

when working with thread blocks of two/three-dimensional shapes, the declaration
switches from int N; to
dim3 threadsPerBlock(N, N); (structure with 3 members, x, y, z, of type int)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 30

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = threadIdx.x;
j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main()
{

int numBlocks;
dim3 threadsPerBlock;
// kernel invocation with one block of N * N threads
numBlocks = 1;
threadsPerBlock.x = N;
threadsPerBlock.y = N;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Single Thread Block Matrix Addition

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 30

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = threadIdx.x;
j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main()
{

int numBlocks;
dim3 threadsPerBlock;
// kernel invocation with one block of N * N threads
numBlocks = 1;
threadsPerBlock.x = N;
threadsPerBlock.y = N;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Single Thread Block Matrix Addition

2D thread
block ini-
tialization

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 30

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = threadIdx.x;
j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main()
{

int numBlocks;
dim3 threadsPerBlock;
// kernel invocation with one block of N * N threads
numBlocks = 1;
threadsPerBlock.x = N;
threadsPerBlock.y = N;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Single Thread Block Matrix Addition

2D thread
block ini-
tialization

goes di-
rectly into
kernel exe-
cution con-
figuration

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 30

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = threadIdx.x;
j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main()
{

int numBlocks;
dim3 threadsPerBlock;
// kernel invocation with one block of N * N threads
numBlocks = 1;
threadsPerBlock.x = N;
threadsPerBlock.y = N;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Single Thread Block Matrix Addition

2D thread
block ini-
tialization

goes di-
rectly into
kernel exe-
cution con-
figuration

built-in
2D thread
indices
0,1,2...

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/single_thread_block_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

There is an upper limit to the number of threads in a thread block, e.g. ≈1024
for current GPUs, because all threads of a thread block are supposed to run on
the same SM (streaming multiprocessor)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

There is an upper limit to the number of threads in a thread block, e.g. ≈1024
for current GPUs, because all threads of a thread block are supposed to run on
the same SM (streaming multiprocessor)

A single SM typically contains 64-128 CUDA cores (INT32, FP32, FP64, TC)

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

There is an upper limit to the number of threads in a thread block, e.g. ≈1024
for current GPUs, because all threads of a thread block are supposed to run on
the same SM (streaming multiprocessor)

A single SM typically contains 64-128 CUDA cores (INT32, FP32, FP64, TC)

Different GPU architectures vary in terms of numbers of SMs, e.g. V100 has 80
SMs, A40 has 84 SMs, A100 has 108 SMs, H100 has 128 SMs;

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

There is an upper limit to the number of threads in a thread block, e.g. ≈1024
for current GPUs, because all threads of a thread block are supposed to run on
the same SM (streaming multiprocessor)

A single SM typically contains 64-128 CUDA cores (INT32, FP32, FP64, TC)

Different GPU architectures vary in terms of numbers of SMs, e.g. V100 has 80
SMs, A40 has 84 SMs, A100 has 108 SMs, H100 has 128 SMs;

However, multiple thread blocks can be launched in parallel as defined by the
initial parameter numBlocks used in the kernel execution configuration
<<<numBlocks,threadsPerBlock>>>

CUDA 4 Dummies — Oct 29-30, 2024

→ https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth

CUDA — Basic Design Principles cont.
How to Determine Max #Threads and Related

cuda−zen sh@n3073−009 : ˜/deviceQuery$./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-PCIE-40GB"

CUDA Driver Version / Runtime Version 11.6 / 11.1

CUDA Capability Major/Minor version number: 8.0

Total amount of global memory: 40354 MBytes (42314694656 bytes)

(108) Multiprocessors, (064) CUDA Cores/MP: 6912 CUDA Cores

GPU Max Clock rate: 1410 MHz (1.41 GHz)

Memory Clock rate: 1215 Mhz

Memory Bus Width: 5120-bit

L2 Cache Size: 41943040 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

CUDA 4 Dummies — Oct 29-30, 2024

CUDA — Basic Design Principles cont.
How to Determine Max #Threads and Related

cuda−zen sh@n3073−009 : ˜/deviceQuery$./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-PCIE-40GB"

CUDA Driver Version / Runtime Version 11.6 / 11.1

CUDA Capability Major/Minor version number: 8.0

Total amount of global memory: 40354 MBytes (42314694656 bytes)

(108) Multiprocessors, (064) CUDA Cores/MP: 6912 CUDA Cores

GPU Max Clock rate: 1410 MHz (1.41 GHz)

Memory Clock rate: 1215 Mhz

Memory Bus Width: 5120-bit

L2 Cache Size: 41943040 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

CUDA 4 Dummies — Oct 29-30, 2024

CUDA — Basic Design Principles cont.
How to Determine Max #Threads and Related cont.

./deviceQuery Starting...

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 3 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device supports Managed Memory: Yes

Device supports Compute Preemption: Yes

Supports Cooperative Kernel Launch: Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 129 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

> Peer access from NVIDIA A100-PCIE-40GB (GPU0) -> NVIDIA A100-PCIE-40GB (GPU1) : Yes

> Peer access from NVIDIA A100-PCIE-40GB (GPU1) -> NVIDIA A100-PCIE-40GB (GPU0) : Yes

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.6, CUDA Runtime Version = 11.1, NumDevs = 2

Result = PASS

CUDA 4 Dummies — Oct 29-30, 2024

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

Can again be one-dimensional, two-dimensional
or three-dimensional

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

Can again be one-dimensional, two-dimensional
or three-dimensional

Again dim3 declaration

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

Can again be one-dimensional, two-dimensional
or three-dimensional

Again dim3 declaration

blockIdx.[x,y,z] is again a built-in variable at the
kernel level to identify corresponding thread
blocks for each of the parallel threads

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

Can again be one-dimensional, two-dimensional
or three-dimensional

Again dim3 declaration

blockIdx.[x,y,z] is again a built-in variable at the
kernel level to identify corresponding thread
blocks for each of the parallel threads

blockDim.[x,y,z] is another built-in variable for
the kernel to asses thread block dimensions

blockDim.y

blockDim.x

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

numBlocks organization of the block grid is
similar to threadsPerBlock

Can again be one-dimensional, two-dimensional
or three-dimensional

Again dim3 declaration

blockIdx.[x,y,z] is again a built-in variable at the
kernel level to identify corresponding thread
blocks for each of the parallel threads

blockDim.[x,y,z] is another built-in variable for
the kernel to asses thread block dimensions

i = (blockIdx.x * blockDim.x) + threadIdx.x is
the most common use caseblockDim.y

blockDim.x

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 256;

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = (blockIdx.x * blockDim.x) + threadIdx.x;
j = (blockIdx.y * blockDim.y) + threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main()
{

dim3 threadsPerBlock, numBlocks;
...
// kernel invocation with blocks of 256 threads
threadsPerBlock.x = 16;
threadsPerBlock.y = 16;
numBlocks.x = N / threadsPerBlock.x;
numBlocks.y = N / threadsPerBlock.y;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Multiple Thread Blocks Matrix Addition

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 256;

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = (blockIdx.x * blockDim.x) + threadIdx.x;
j = (blockIdx.y * blockDim.y) + threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main()
{

dim3 threadsPerBlock, numBlocks;
...
// kernel invocation with blocks of 256 threads
threadsPerBlock.x = 16;
threadsPerBlock.y = 16;
numBlocks.x = N / threadsPerBlock.x;
numBlocks.y = N / threadsPerBlock.y;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Multiple Thread Blocks Matrix Addition

2D initial-
izations

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 256;

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = (blockIdx.x * blockDim.x) + threadIdx.x;
j = (blockIdx.y * blockDim.y) + threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main()
{

dim3 threadsPerBlock, numBlocks;
...
// kernel invocation with blocks of 256 threads
threadsPerBlock.x = 16;
threadsPerBlock.y = 16;
numBlocks.x = N / threadsPerBlock.x;
numBlocks.y = N / threadsPerBlock.y;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Multiple Thread Blocks Matrix Addition

2D initial-
izations

general type
kernel exe-
cution con-
figuration

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

#define N 256;

// kernel definition;
_ _global_ _ void MatAdd(float **A, float **B, float **C)
{

int i, j;
i = (blockIdx.x * blockDim.x) + threadIdx.x;
j = (blockIdx.y * blockDim.y) + threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main()
{

dim3 threadsPerBlock, numBlocks;
...
// kernel invocation with blocks of 256 threads
threadsPerBlock.x = 16;
threadsPerBlock.y = 16;
numBlocks.x = N / threadsPerBlock.x;
numBlocks.y = N / threadsPerBlock.y;
MatAdd <<< numBlocks, threadsPerBlock >>> (A, B, C);
...

}

Multiple Thread Blocks Matrix Addition

2D initial-
izations

general type
kernel exe-
cution con-
figuration

general us-
age of built-
in variables
in 2D

CUDA 4 Dummies — Oct 29-30, 2024

→ https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://tinyurl.com/cudafordummies/i/l1/multiple_thread_blocks_matrix_addition.cu
https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

256 threads per thread block is
arbitrary but a frequent choice

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

256 threads per thread block is
arbitrary but a frequent choice

Thread blocks are required to
execute independently in any
order

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

256 threads per thread block is
arbitrary but a frequent choice

Thread blocks are required to
execute independently in any
order

Scalability results from this
requirement

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

Workflow is devided between host and device

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

Workflow is devided between host and device

CUDA threads execute on the GPU the rest of
the program on the host CPU

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

Workflow is devided between host and device

CUDA threads execute on the GPU the rest of
the program on the host CPU

Thread blocks are all parallel

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

Workflow is devided between host and device

CUDA threads execute on the GPU the rest of
the program on the host CPU

Thread blocks are all parallel

Host code is usually serial, both sections may
execute concurrently

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA — Basic Design Principles cont.
CUDA C-Programming Guide, Programming Model cont.

Workflow is devided between host and device

CUDA threads execute on the GPU the rest of
the program on the host CPU

Thread blocks are all parallel

Host code is usually serial, both sections may
execute concurrently

If subsequent host sections are dependent on
kernel results, we need to insert
cudaDeviceSynchronize(); after kernel call

CUDA 4 Dummies — Oct 29-30, 2024

→ https://docs.nvidia.com/cuda/cuda-c-programming-guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide

Take Home Messages

✈ GPU kernels need to account for proper logic

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages

✈ GPU kernels need to account for proper logic
✈ Kernel execution configuration facilitates efficient operation of GPU

resources

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages

✈ GPU kernels need to account for proper logic
✈ Kernel execution configuration facilitates efficient operation of GPU

resources
✈ Massive parallelism at the level of GPU threads replacing conventional

loops over array elements with many individual threads directly acting on
thread-specific data elements in parallel

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages

✈ GPU kernels need to account for proper logic
✈ Kernel execution configuration facilitates efficient operation of GPU

resources
✈ Massive parallelism at the level of GPU threads replacing conventional

loops over array elements with many individual threads directly acting on
thread-specific data elements in parallel

✈ Built-in variables to quasi-automatize various workloads, e.g. threadIdx,
blockIdx 0,1,2,3...

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages

✈ GPU kernels need to account for proper logic
✈ Kernel execution configuration facilitates efficient operation of GPU

resources
✈ Massive parallelism at the level of GPU threads replacing conventional

loops over array elements with many individual threads directly acting on
thread-specific data elements in parallel

✈ Built-in variables to quasi-automatize various workloads, e.g. threadIdx,
blockIdx 0,1,2,3...

✈ Shapes of thread blocks go hand in hand with domain decomposition
(vector, matrix, volume)

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages

✈ GPU kernels need to account for proper logic
✈ Kernel execution configuration facilitates efficient operation of GPU

resources
✈ Massive parallelism at the level of GPU threads replacing conventional

loops over array elements with many individual threads directly acting on
thread-specific data elements in parallel

✈ Built-in variables to quasi-automatize various workloads, e.g. threadIdx,
blockIdx 0,1,2,3...

✈ Shapes of thread blocks go hand in hand with domain decomposition
(vector, matrix, volume)

✈ GPU computing means eco-friendly computing !

CUDA 4 Dummies — Oct 29-30, 2024

Take Home Messages cont.

CUDA 4 Dummies — Oct 29-30, 2024

	Current Situation — Glimpse into top500
	Components
	Historical
	Consumer/Enterprise-Grade GPUs
	CUDA — Basic Design Principles
	Take Home Messages

