
Agenda

The origin of CNNs
General idea

How does a CNN work?
Convolution

Example VGGnet
CNN architecture

1

2

3

The origin of CNNs

General idea

The origin of CNNs

❐ Used for image recognition since 1980s

❐ Inspired by the brain’s visual cortex

○ Neurons in visual cortex have a small local
receptive field

○ Receptive fields of different neurons overlap
○ Together they tile the whole visual field
○ Some neurons only react to specific shapes
○ Some neurons react to more complex

shapes from lower levels

❐ Powerful architecture of lower and higher-level
neurons to detect complex patterns

Source: Géron (2019) Neurons Shapes

Fields of application

Image detection
100 95

Voice recognition

Natural language
processing (NLP)

How a CNN works

Convolution

How does a CNN work?

Image
preprocessing Convolution Filters

Pooling Activation

What does a computer see?

input image
3600 x 2400

resized image
36 x 24

Image as matrix
of numbers [0, 1]

Matrix of numbers
[0, 1]

(864 values)

Source:
https://www.youtube.com/watch?v=iaSUYvmCek
I

Task in computer vision

input image matrix of numbers

Harrison Ford
[0.8]

Sean Connery
[0.1]

Roger Moore
[0.05]

Tom Cruise
[0.05]

Classification

prediction

Why not simply use a deep network with fully connected layers?

The picture has 10.000 pixels

Indie resized to 100 x 100 … With a 1.000 neuron input layer …

and a fully connected 1st hidden layer, …

this first operation amounts to a total of 10
million connections (weights, parameters).

And that is just the 1st layer!

For large images, a deep neural network
breaks down.

AND we do not capture the spatial
information of the pixels

…

…
…

Input
layer

1st hidden
layer

The convolution layer –
using spatial structure

Idea: connect smaller sections of the input
image to respective neuron in the hidden
layer.

Receptive field (FILTER) marks a specific
area in the input image.

Use a sliding window to define the
connections.

The GOAL: How to weight the FILTER to
detect particular features in the image?

Input image
1 neuron for 1 pixel

Hidden layer
1 neuron for all pixels

The convolution layer –
using spatial structure

Apply a set of weights – a filter
– to extract local features

Use multiple filters to extract
different features

Spatially share parameters
of each filter

Input image
1 neuron for 1 pixel

Hidden layer
1 neuron for all pixels

Element-wise multiply and the outputs

part of input image filter

1 3

5 2

1 2

2 1
x 19

(1x1) + (3х2) + (5x2) + (2х1) = 19

Application of a filter

Convolutional layer: Connection between neurons and only those pixels within their receptive field.

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

x

4 3 4

2 4 3

2 3 4

image filter feature map

Applying
different
filters

-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

0 -2 0

-2 1 2

0 2 0

Horizontal edge
detection

vertical edge
detection

mixed edge
detection

Padding

Adding additional space to preserve the same height and width of previous layer.

x

image

filter

0 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 0 0 0 0 0 0

2 2 3 1 1

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

0 2 2 1 1

1 0 1

0 1 0

1 0 1

feature map

zero padding

Also, different
kinds of paddings
possible (i.e., One
padding).

Highlight pixels at
the edges of
image.

Using a larger stride

The shift from one receptive field to the next one is called stride.

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

x

image

filter feature map

4 4

2 4

Connect larger input
to smaller layer.

Reduction of the
model’s computational
complexity.

Stacking multiple feature maps

Applying different filters results
in different feature maps

…
Convolutional layers with
multiple feature maps

Representation in 3D

Stacking multiple
feature maps

…

❐ Number and size of filters in each
convolution layer are set by design

❐ Filters initialized at random and then
learned (fwd pass, backward prop)

❐ Convolutional layer learns most useful
filters automatically during training for
its task

❐ Layers after this will learn to combine
them to more complex patterns

Can you spot the difference?

Full sized image Image subsampled
by pooling

image

Max pooling

Pooling layers

1 1 2 0 4

0 1 7 1 0

0 8 1 1 1

9 0 1 3 5

0 4 1 0 0

Stride = 2
Filter = 3x3

feature map

8 7

9 5

Subsample (i.e., shrink) the input image to reduce the computational load (memory usage, number of parameters)

Set filter size, stride and
padding as for convolution
layer.
No weights attached.

The layer aggregates input with
an aggregation function (i.e.,
max or mean).

Activation by non-
linearity

❐ Apply after every convolution
operation

❐ rectified linear unit (ReLU)

❐ f(x)=MAX (0,x)

❐ pixel-by-pixel operation that
replaces all negative values
by zero

vertical edges activated

Example VGGNET

CNN Architecture

From basic to
detailed features

Remember the visual
cortex?

Low level features
(1st Conv Layers)

Mid level features
(…)

High level features
(Last Conv Layers)

VGGNET

❐ Invented by Simonyan and Zisserman from Visual Geometry Group (VGG)
at University of Oxford in 2014 [1]

❐ Large Scale Visual Recognition

❐ Fixed filter size of 3×3 and the stride of 1

❐ Different versions (VGG16, VGG19, etc.)

❐ Why? Reduce the # of parameters in the CONV layers and improve
on training time

[1] K. S. a. A. Zisserman, "Very deep convolutional networks for large-scale image recognition“, in International
Conference on Learning Representations (ICLR), San Diego, 2015.

VGGNET 16

❐ Basic feature detection (edges, corners, etc.)
❐ Parts of objects (for faces i.e., eyes, noses, etc.)
❐ Higher representations (recognize full objects,

in different shapes and positions)

Each CNN layer learns filters of increasing
complexity.

A closer look on final prediction

1 0 1

0 1 0

1 0 1

1

2

1

1

3

5

1

0

0

Pooling Layer
7 x 7 x 512

Flattening
1 x 1 x 25.088

Hidden Layer
1 x 1 x 4.096

Hidden Layer
1 x 1 x 4.096

Hidden Layer
1 x 1 x 1.000

Softmax
1 x 1 x 1.000

[0.7]

[0.1]

[0.1]

[0.1]

STAY IN TOUCH

@eurocc_austriaEuroCC Austria eurocc-austria.at

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,
Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia

THANK YOU

