Large Language Model Parallelizaion

Or: how to chop up a Llama

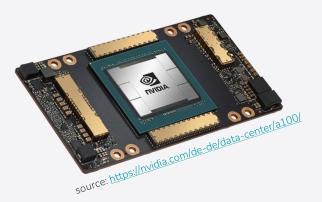
Speaker: Simeon Harrison Trainer at EuroCC Austria

The Vienna Scientific Cluster

VSC-4 (2019)

790 CPU nodes

- 2x Intel Skylake Platinum CPUs
- 2x 24 cores per CPU
- 96 GB of memory per node



VSC-5 (2022)

770 CPU nodes

- 2x AMD EPYC Milan
- 2x 64 cores per CPU
- 512 GB of memory per node

60 GPU nodes 2x NVIDIA A100,

• 40 GB memory per GPU

40 GPU nodes 2x NVIDIA A40

• 40 GB memory per GPU

Problems Arise

Data and Model too large

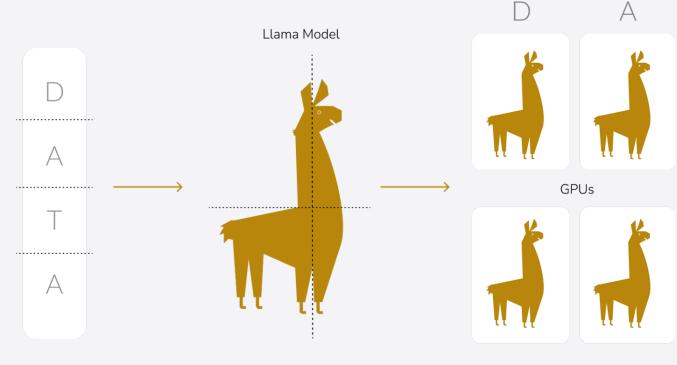
You might quickly encounter a situation in which you data and model no longer fit in your GPU's memory. I'm too big for this GPU. I need to lose some weight(s).

Memory footprint estimation for Mistral 7B:

 $7 \times 4 = 28$ GB of GPU memory $7 \times 4 \times 2 = 56$ GB of CPU memory

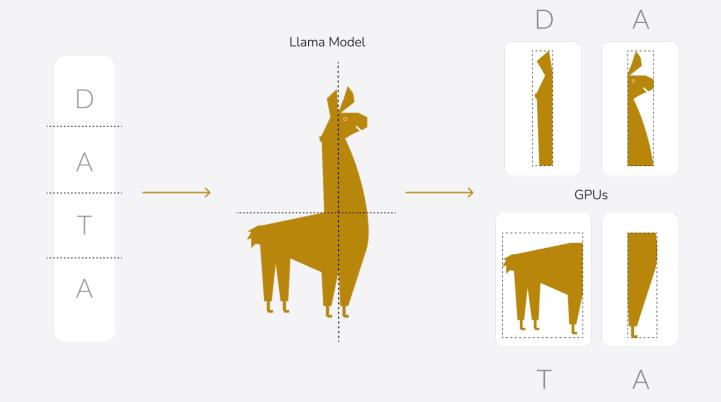
7 comes from 7B parameters4 stands for 4 Bytes per parameter2 stands for 2 GPUs per node

Data Parallelism



A

Model Parallelism



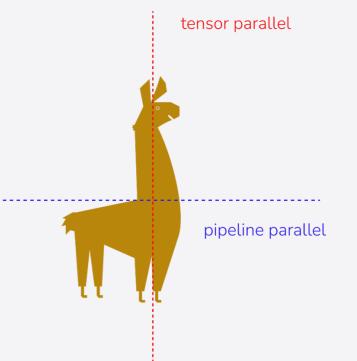
Model Parallelism

Pipeline parallel

- Model split up along layers
- Each GPU gets one or several layers
- Results are synced at the end of every step
- Important: Largest layer needs to fit in GPU's memory

Tensor parallel

- Every tensor is split up into several chunks
- One GPU gets one shard of the whole tensor
- Each shard gets processed seperately
- Results are synced at the end of every step



DDP

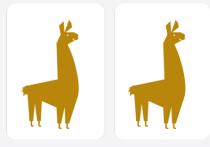
DistributedDataParallel

replicates the model across GPUs and processes batches independently on each GPU.

DDP synchronizes gradients efficiently across GPUs, making it more scalable and performant, especially when dealing with large models or clusters of machines.

Ideal, if model fits in GPUs memory with ease.

D A



GPUs

Hugging Face Accelerate

Accelerate is a library that enables the same PyTorch code to be run across any distributed configuration by adding just a few lines of code.

It simplifies the use of advanced parallelism techniques such as Fully Sharded Data Parallel (FSDP) and ZeRO (Zero Redundancy Optimizer), allowing users to scale large models across multiple GPUs and nodes with minimal changes to their code.

- + from accelerate import Accelerator
- + accelerator = Accelerator()

+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(

- model, optimizer, training_dataloader, scheduler
- +)
- for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) loss = loss_function(outputs, targets) + accelerator.backward(loss)
- accelerator.backward(loss optimizer.step() scheduler.step()

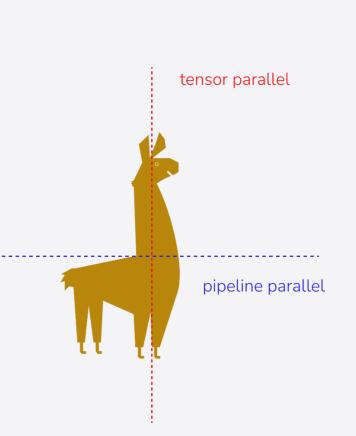
ZeRO with DeepSpeed

Zero Redundancy Optimizer

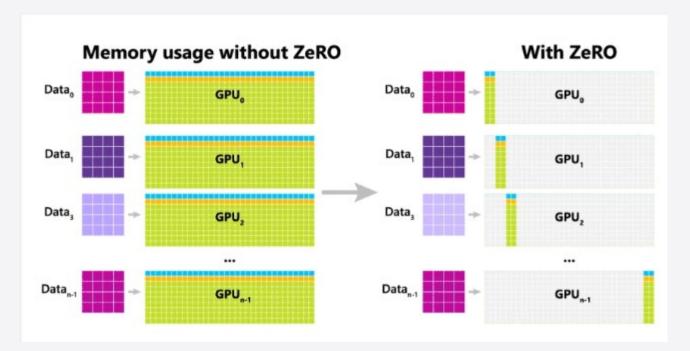
Is a memory optimization technique designed to scale large models efficiently across multiple GPUs. The core idea behind ZeRO is to minimize memory redundancy when training large-scale models, making it possible to train models that wouldn't otherwise fit in memory.

- ZeRO Stage 1 Optimizer State Sharding
- ZeRO Stage 2 Gradient Sharding
- ZeRO Stage 3 Parameter

ZeRO is typically used with DeepSpeed



ZeRO with DeepSpeed



Source: https://www.microsoft.com/en-us/research/blog/

FSDP

Fully Sharded Data Parallel

To accelerate training huge models on larger batch sizes, we can use a fully sharded data parallel model. This type of data parallel paradigm enables fitting more data and larger models by sharding the optimizer states, gradients and parameters.

Mapping between FSDP and ZeRO

- FULL_SHARD maps to the DeepSpeed ZeRO Stage-3.
- SHARD_GRAD_OP maps to the DeepSpeed ZeRO Stage-2.
- NO_SHARD maps to ZeRO Stage-0.

Fine-tuning a Model on the VSC

You need

- VSC access
- Working env
- Training data
- Python scripts
- Config files
- Slurm script
- Off you go!

<pre>#!/bin/bash #SBATCHjob-name=LLM_mistral_chat #SBATCHnodes=2 #SBATCHntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCHcpus-per-task=256 # incl hyperthreading #SBATCHpartition=zen3_0512_a100x2 #SBATCHqos=zen3_0512_a100x2 #SBATCHgres=gpu:2 #SBATCHoutput=/home/fs71550/simeon/LLM_Jurikatur/output/mistral_chat-%x-%j.out #SBATCHreservation=eurocc_training set -e</pre>
<pre># Change Conda env: module load miniconda3 eval "\$(conda shell.bash hook)" conda activate /gpfs/data/fs71550/simeon/env/LLM_env_katrin</pre>
<pre># Find avaliable node names nodes=\$(scontrol show hostnames "\$SLURM_JOB_NODELIST") nodes_array=(\$nodes)</pre>
node_0=\${nodes_array[0]}

THANK YOU

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia

STAY IN TOUCH

@eurocc_austria

eurocc-austria.at