
Large Language Models
on Supercomputers
A brief overview

Speaker: Simeon Harrison
Trainer at EuroCC Austria



EuroCC

Fully funded EU project

• EuroCC is EU-funded international initiative 
aimed to support the uptake of AI and High-
Performance Computing (HPC) in Europe

• Set up of 32 National Competence Centres 
(NCCs) across Europe

• EuroCC Austria is one of them

• Service Provider for AI, HPC and HPDA



Need More Compute-Power?

LUMI

• Fastest supercomputer in Europe and 
the fifth fastest globally.

• Sustained computing power (HPL) is 
380 petaflops

• Over 262 000 AMD EPYC CPU cores

• Equipped with AMD Radeon Instinct 
MI250X GPUs

https://www.lumi-supercomputer.eu/

• Second fastest supercomputer in 
Europe and the sixth fastest globally.

• Sustained computing power (HPL) is 
239 petaflops

• Intel new gen Sapphire Rapids 56 cores

• Equipped with custom NVIDIA A100 
SXM6 64GB GPUs

https://leonardo-supercomputer.cineca.eu/

Leonardo

https://www.lumi-supercomputer.eu/
https://leonardo-supercomputer.cineca.eu/


European HPC 
Landscape

EuroHPC JU systems

Different access modes:
Calls for Proposals

EuroHPC development access:
Opportunity to test the system

Applicants can request a small number 
of node hours to get acquainted with 
the supercomputers to further develop 
their software.

https://eurohpc-ju.europa.eu/access-our-supercomputers/access-policy-and-faq_en
https://eurohpc-ju.europa.eu/eurohpc-ju-call-proposals-development-access_en


What can LLMs be used for?

Text Generation

Conversation

Translation

Question Answering

Text Classification

Similarity Detection

Text to Speech

Transcription of Videos

Sentiment Analysis
Summarization

Many different use-cases

• Made possible by the
transformer
architecture

• Choose your model
according to the use-
case

• Is there a pre-trianed
model for your use-
case?



How can you influence LLMs?



How can you use LLMs with your data?

• Ideal for tapping into company‘s knowledge DBs
• Minimises hallucinations by grounding response 

on retrieved evidence
• Can quickly adapt to changing data
• Makes it easier to interpret result

• Ideal if plenty of labelled data is available
• Teaches model domain specific vocabulary
• Company‘s writing/answer style is „baked“ into 

model through fine-tuned parameters

RAG: 
Retrieval Augmented Generation Finetuning



Transformer Models
Spoilt for Choice at https://huggingface.co/

Easy filtering
Huge repository

All the relevant info
Source: https://huggingface.co/

https://huggingface.co/


Pick the Right Model



Prepare your Data

Garbage in – garbage out

• Most underrated aspect of AI

• Most time consuming aspect of AI. Time 
spent in data preparation reflects in the 
quality of the product

• For fine-tuning you need labelled data

• Remember, that you are going to change 
the models parameters with your data



The Hugging Face Ecosystem
From Transformers to the Hub

Speaker: Simeon Harrison
Trainer at EuroCC Austria



Hub and libraries

Hugging Face Hub

Models Datasets Metrics Docs

Hugging Face libraries

Tokenizers Transformers Datasets

Accelerate



Libraries

Tokenizers
Very fast at tokenizing text, thanks to the
Rust bakend.

Takes care of pre- and postprocessing, 
such as normalization and transformation
to required format.

You can load tokenizers just like you load
models.

Provides a standardized interface to a 
wide range of transformer models.

Supports PyTorch, TensorFlow and JAX 
and makes sitching between them easy.

Provides task-specific heads to fine-tune 
LLMs on downstream tasks

Transformers



Libraries

Datasets
Simplifies the process of downloading
and transforming data into required
format.

Interface to thousands of datasets that
can be found on the hub.

Interoperable with most common data
wrangling tools and frameworks such as
Pandas, NumPy etc.

Adds a layer of abstraction to training
loops with the goal of making code 
portable (local laptop to cluser)

Makes training on multi-GPU, multi-node
easier to accomplish, as you can switch 
between parallelization strategies.

Accelerate



Transformer Anatomy
Attention is really all you need?

Speaker: Simeon Harrison
Trainer at EuroCC Austria



Transformer Anatomy

Source: “Attention Is All You Need”, Vaswani et al.

The original architecture
A transforer consists of a encoder and/or 
decoder block.

Words (tokens) are input as numerical 
representations (embeddings).

About 1/3 of all parameters are in the 
multi-head attention blocks

About 2/3 of all parameters are in the 
feed forward networks (also known as 
multi layer perceptron)

Encoder Decoder



Transformer Family

Source: Natural Language Processing with Transformers, O‘Reilly

Encoder only:
These models ecxel at text classification, 
named entity recognition, and question
answering

Decoder only:
Very good at predicting the next word in 
a sequence, therefore mostly used for
text generation

Encoder-Decoder:
These models are often used for machine
translation or summerization tasks.



Context Is All You Need

Embeddings
Here, we will refer to “word” 
instead of “token”, as it makes 
the content easier to explain.

A word embedding comes as 
a multi dimensional vector 
(e.g. 12.000 dim).

The initial word embedding in 
all of the examples of the 
word „mole“ is the same.



Context Is All You Need

Attention
The word „mole“ should be 
represented by a unique vector in 
the embedding space, depending on 
ist context.

An attention block should compute 
the vectors that you need to add to 
the original, generic vector to get it 
to the correct, meaningfull, rich 
representation, depending on the 
context in which the word is used.



Lion

We associate the word „lion“ with a 
big cat, living wild on the African 
continent.
We probably imagine a majestic 
predator with a big mane.

The embedding of the word „lion“ is 
a vector with a certain length and 
direction within the embedding 
space.

Context Is All 
You Need



Context Is All 
You Need
Sea Lion

However, as soon  we add the word 
„sea“ infront of „lion“ we imagine a 
totally different animal.

The same goes for the embedding. 
The attiontion mechanism needs to 
update the direction and length of 
the vector so that it represents the 
animal in question correctly.



Sea Lion Cuddly Toy
The context depends on more than 
just the immediate words to the left 
and right. 

The embedding of „sea lion cuddly 
toy“ will certainly be very different of 
just „lion“.

In order to achieve that the vector for 
„lion“ needs to attend to all the other 
words in the input (context size).

Context Is All 
You Need



Self Attention



Self Attention



Attention! Queries, Keys and Values

The Attention Score

Q…..query matrix

K…..key matrix

V…..value matrix

d…..dimension of (smaller) query-key space 



Attention! Queries, Keys and Values

Query

Imagine it like this: 
One particular attention head is focussing on 
nouns. The query vector is like looking for 
labels with „adjective“ on them to better 
understand the noun.
In reality, this is much more abstract.



Attention! Queries, Keys and Values

Key



Attention! Queries, 
Keys and Values

Query – Key

Compute the dot product with each 
query-key pair, to determine how 
well the key matches the query. 
Where the queries and keys align, 
the dot product is larger.

Imagine it like this: 
With our previous example, the dot 
product of the key vectors of „fat“ 
and „ginger“ with the vector of „cat“ 
yields the largest result. The 
embeddings of „fat“ and „ginger“ 
attend to „cat“.



Attention! Queries, 
Keys and Values

Attention Pattern
Lower left dot products are masked, 
as we want the model to predict 
every next word during training. To 
prevent data leakage, future words 
should not influence previous ones.

The size of the attention pattern is 
the context size squared.
This is why the context size can be
a substantial bottleneck.



Attention! Queries, Keys and Values

So far, we have determined which word is relevant 
to which other word (dot product of query and key).

We would like to use this as a score for how 
relevant every word is to update the meaning of 
other words.

For numerical stability the dot product is devided 
by the square root of the dimension of the query-
key space.

To normalize the numbers to be between 0 and 1 
we apply softmax.

Attention



Value
.

Attention! Queries, 
Keys and Values



Value

Attention! Queries, 
Keys and Values



Attention

Multi -Head Attention

Source: “Attention Is All You Need”, Vaswani et al.



Attention

Cross Attention
Cross attention is almost the same as 
self attention.

Difference:
• query and key maps act on different 

data sets (e.g. 2 different languages 
in machine translation)

• no masking, since there is no issue of 
later words affecting earlier ones.

Source: “Attention Is All You Need”, Vaswani et al.



Feed Forward Network
Multi Layer Perceptron (MLP)

• Home to approx. 2/3s of all parameters

• This is where „knowledge“ is baked in

• Source of halluzinations

• Facts that are associated with input 
embeddings are added to the input 
embeddings

• Each embedding vector can be processed 
independently -> parallelization!



Feed Forward Network



Tokenization & Embeddings
Turning words into numbers

Speaker: Simeon Harrison
Trainer at EuroCC Austria



From Text to Tokens

Character Tokenization

• Only needs 256 integers

• Good to tokenize rare words

• Helps with misspellings

• Looses linguistic structure

• Rarely used in practice

L a r g e l a n g u a g e m
o d e l s o n s u p e r c o m 
p u t e r s



From Text to Tokens

Word Tokenization

• Model does not have to learn words
from characters

• Each word has specific ID

• Size of vocabulary explodes

• Model needs to learn different tokens
for e.g. singular and plural

Large lanugage models
on supercomputers



From Text to Tokens

Subword Tokenization

• Best of both worlds

• Deal with complex words easily

• Frequent words remain as one token

Large lanugage models
on super com put ers



From Tokens to Vectors

Embeddings
Tokens are mapped to unique integers accoding to the
vocabulary size of the tokenizer.

Now, the tokens need to be embedded, which means
turned into a vector representation.

This is done by an embedding layer of a model. The 
model takes each token ID and looks it up in an 
embedding matrix. The embedding matrix is a learned 
set of weights that maps each token ID to a 
corresponding high-dimensional vector (embedding).

1.2
0.4
3.6
5.0
3.9
8.5
2.1
0.6
7.0
8.2
4.2
9.8
3.0
⋮

1.1
4.3
2.7
3.3
0.0

Woman 



From Tokens to Vectors

Embeddings
Each word/token has a unique
direction in the embedding space

Similar words point in a similar
direction.



This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant 
agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria, 
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, 
Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North 
Macedonia, Iceland, Montenegro, Serbia

THANK YOU


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43

