ML Infrastructure and
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ML Lifecycle, Intro to ML Systems and Infrastructure
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ML Infrastructure and Operations

e Set of processes, architectures, infrastructure and tools to
ensure, reproducible, scalable, robust, and observable ML
lifecycle development and deployments in production
(offline/streaming/online)
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ML Lifecycle - Simple Pipeline

Lifecycle expressed as flow/pipeline(s)
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Systems - Orchestration and Lifecycle Management

e Paradigm on popular orchestrator systems:
o process centric (Airflow, Argo, ....) - lifecycle stages are coupled
with (comp.) process
o event centric ( Step Functions, .. ) - manages lifecycle stage
transitions as events
e Focus on managing lifecycle(s), - evtl. lots of them (...millions)



Lifecycle - What about Realtime/Online?

Lifecycle of request...
Recommender system example
Realtime pipeline systems (internal to big companies...)

billions millions thousands tens

candidate , : :
embeddings { business rules } [ ranking 1 J { features 1 [ ranking 2 }

candidate generation phase ranking phase
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Data Systems in ML Operations

Discover, Store and Reuse data for high scale ML
Data Warehouses: large tables, curated data: used for analytics and history
Requires Query Processing: AWS Redshift + Tableau, Google BigQuery + Looker
Data Lakes:
o structured/unstructured, large-scale, offline, data of all company, analytics, ML,
etc. cheap(ish).
o simple* metadata systems for schemas, versions and raw data
o Requires processing (typically Spark)
Feature Store(s):
o Specialized for ML features, offline and online, not cheap, for curated and
reusable data
o Online data in DB, manages offline online skew, realtime features via streaming
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Data Systems in ML Operations

. Data Warehouses:
. Data Lakes:

. Feature Store(s):
e Build vs Buy

Data sources
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databases
(on-premises)

Azure SQL
Database

Table Storage

Azure
Cosmos DB

Orchestration

o8

l

Ingestion

SQ

=

»

Y

Azure Data

=
4

Y

Lake Storage

HME Microsoft
Azure

Storage
- @

Azure Synapse
Analytics

|

Analysis Visualization
g iI
A Analysi
ey 2 YR Power BI
Services
Authentication

Data Factory

)

Azure Active
Directory

&

EURO

AUSTRIA




Model Infra and Systems

® Model Training Systems/Infrastructure:

o Large Spark Cluster(s), or K8, or Ray, Cloud Vendors ... Support for distributed
training (Decision trees, Boosted Models, DNN etc.). Scheduling, Multi-tenancy,
Rate limiting, Billing, ...
e Inference Systems/Infrastructure:
o Trained model != deployed model i.e. compilation
e ModelStores:

o Stores models, provides versioning, and model metadata,
o Versions, tracks code/lib dependencies, model lineage, input/output schemas,
model cards,... checkpoints, cadence of retraining, App specific tags, ...

e Build vs Buy
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Model Infra and Systems

Model Inference and Systems:
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Testing in Al

Current Situation in Evaluation Approach
o Not very principled: manual, ad-hoc, blinders on narrow performance aspects (i.e.
accuracy)
o Metric centric
. Quality in ML/Al Context:
o Quality is about validating behavioral scenarios
o Clear pass/fail outcome, similar to software eng. testing (unit, integration...)
o Metrics are just part of story, they represent data
o Talk about Quality Assurance
o Shift from Metric Centric to Test-Centric Paradigm
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Testing and Metrics in Al

Metric Systems: required and various providers

Metrics sourced/calculated by sql engines: Presto, Athena, Trino, ...
OpenTSDB + Graphana

Elastic Search + Kibana

Vendors: emerging ecosystem - few companies, Arize Al, Evidently Al
Build vs Buy
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Testing in Al
. Beyond Accuracy:

o Holistically validate diff. behavioral scenarios privacy_—— . cost
. Quality has multiple dimensions / \\
o Performance (accuracy, rmse eftc.) i _ \

o Robustness (perturb inputs and check changes)
o Privacy (check for leaking private info)

|
3 ly performance
o Security (red teams, attack own ML system)
o [Fairness (segments, under/overrepresented..)

. robus ness‘ ———— fairness
o Cost (inference latency, overall $ cost) ‘
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Testing and Deployment - An Interplay

. Lifecycle - see as continuous journey to check/ensure quality:
. Deployments - (long) Processes, not Events

Deta Lake, ModelStore ! EvaluationStore | Deployment ! EvaluationStore |
FeatureStore ] : ; '
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Testing and Deployment - An Interplay

Validation, Experimentation and Monitoring via ML Testing

A/B deployment deploy

lifecycle @ chﬁiﬁﬁn
( Q ~0O—0
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ntage

Testing and Deployment - An Interplay

50%

50%

Many Deployment types - many winning versions (>> # models)
a/b, multi-arm and contextual bandits, ...
Single model vs many models

100%

100%
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Testing and Deployment - An Interplay

50%

50%

Live Experimentation Infrastructure

Build vs Buy

100%

100%
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Al Org - Inception to Excellence

Safety. -
Infrastructure . o Training & Research & Venture &
Applications Quality & : s
& Platform Governance Talent Dev. Collaboration Acquisitions
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Be Bold, Be Hungry, Be Fearless - Thank You

e Questions



