Navigating the Al Journey

From Inception to Excellence

Speaker: Simeon Harrison Trainer at EuroCC Austria

Navigating the Journey

"Computers are useless. They can only give you answers."

Pablo Picasso

EURO

Al Product Lifecycle

Integrate with models, build customer facing features, functional and automation tests

Product and business, ML engineers, software engineers, quality analysts

Build and validate applications Human evaluations, A/B tests Product and business,

domain experts, data and quality analysts, software engineers

Quality and performance evaluation

Al Product Improvement

Data Management

Al Lingo

- Machine Learning is a subset of Artificial Intelligence
- Deep Learning is a subset of Machine Learning
- "Deep" does not mean a deeper understanding of the problem at hand. "Deep" stands for many successive layers of abstract representation

Supervised Learning

generation and training of the model

Unsupervised Learning

generation and training of the model

output classification by features result not known

Reinforcement Learning

Classification

- Algorithm tries to predict the correct label of input data
- Learning happens by exposure to examples i.e. mapping inputs to targets

This is a dog

This is (most likely) not a dog

Regression

- Algorithm tries to predict continuous valuse
- It models the relationship between the input fatures and the target varable(s)

What is a model?

Predictions

Predictions

From Input to Output

Major Model Types

MODEL

Data Preprocessing

Drop bad prediction requests

Can't do this for business critical decisions and will get a filters view of the state of your predictions

Imputations (predict or set default values)

Can create drift in your predictions and could introduce data leakage if done improperly

Do nothing

Simplest, but not always possible. Service might throw an error or bad data is used to make business decisions

Transformation Pipelines

Aim is to get the data ready for the ML model.

For a CV model this might include:

- Resizing
- Normalisation
- Randomisation
- Data augmentation
- Batching

Tests of ML Artefacts

Which trendline is better?

Which trendline is better?

Monitoring and Live Experimentation

Dicipline still in early stages

Detect model rot early

Use logs, dashboeards & alerts

Monitor specific metrics:

- Accuracy related (user feedback)
- Predictions
- Features
- 🗌 Raw inputs

We are here to help

EuroCC can help you with the HPC side of things

- Training
- Consulting
- Access to a supercomputer

Don't hesitate to contact us!

STAY IN TOUCH

@eurocc_austria

eurocc-austria.at

THANK YOU

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia