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Navigating the Journey

,Computers are useless.

They can only give you answers.”

Pablo Picasso
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Al Product
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‘ Data Management

Devices,
web, curation
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Machine Learning is a subset of
Artificial Intelligence

Deep Learning is a subset of Machine
Learning

“Deep” does not mean a deeper
understanding of the problem at
hand. “Deep” stands for many
successive layers of abstract
representation
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‘ Supervised Learning

generation and training of the model

100%

error reduction
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‘ Unsupervised Learning

generation and training of the model

output

classification by features

result not known
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‘ Reinforcement Learning
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Classification

(] Algorithm tries to predict the
correct label of input data

(] Learning happens by exposure
to examples i.e. mapping inputs
to targets
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This is a dog

1

This is (most likely) not a dog
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Regression

(] Algorithm tries to predict
continuous valuse

[J It models the relationship
between the input fatures and
the target varable(s)




What is a model?
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Predictions
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‘ Predictions
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‘ From Input to Output

Predictions Labels
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‘ Major Model Types

support
vector machines

regression \/ \/
classification \/ \/

decision trees

k-nearest
neighbours

Vv
Vv
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‘ Data Preprocessing

Drop bad prediction requests

Can't do this for business critical decisions and
will get a filters view of the state of your predictions

Imputations (predict or set default values)

Can create drift in your predictions and could
introduce data leakage if done improperly

Do nothing

Simplest, but not always possible. Service might
throw an error or bad data is used to make business
decisions
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Transformation Pipelines
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Aim is to get the data ready for the ML
model.

ODO0000

For a CV model this might include:

Resizing
Normalisation
Randomisation
Data augmentation
Batching
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Tests of ML Artefacts
w
J

(] Core dataset for the model to learn on

Training data MSE per Epoch

MSE

Validation data }

(] Test model on new data

Epoch
/[ Test data } \ Training MSE

Validation MSE - Expected

. Validation MSE - Overfitting
[} Final test before release

(] Model shouldn‘t be tuned thereafter
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Which trendline is better?
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Monitoring and Live Experimentation

Dicipline still in early stages
Detect model rot early
Use logs, dashboeards & alerts

Monitor specific metrics:

(] Accuracy related (user feedback)
(] Predictions

(] Features O

[J Raw inputs
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Wrap_up AUSTRIA

We are here to help

EuroCC can help you with the HPC side of things
* Training
* Consulting

* Access to a supercomputer

Don‘t hesitate to contact us!
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