VELOCIraptor: A MPI+OpenMP data analysis
tool for cosmological simulations

Pascal Jahan Elahi

Pawsey Supercomputing Research Centre, Kensington, WA, Australia
pascal.elahi@pawsey.org.au

Abstract. We present VELOCIraptor, a massively parallel analysis tool
for cosmological simulations designed to identify cosmic structures like
galaxies. The code is written in C++17, and uses MPI and OpenMP
APT’s for parallelisation. MPI decomposition uses space-filling Z-curves
to minimize load imbalances and communication. Communication load
is further reduced by dynamic repartition of MPI domains. The code
also uses the HDF5 library for parallel 10, using MPI communicators to
group MPI processes for reading and writing data, improving the parallel
10 load balance. For each MPI process, nested OpenMP parallelism
is implemented for all computationally intensive portions of the code.
We also demonstrate the power of the VELOCIraptor (sub)halo finder,
showing how it can identify subhalos, phase-space density peaks residing
in larger so-called host halos, configuration space overdensities, deep
within the host, where the density contrasts to between them and their
host is negligible.

1 Introduction

A common approach to understanding the large-scale universe and the objects that
form within it, like galaxies, is to run high-resolution, large-volume cosmological
simulations. A critical step in extracting information from sophisticated, multi-
billion particle simulations is the identification of structures, like dark matter
halos and synthetic galaxies. Identifying (sub)structures is a non-trivial task and
has led to the development of equally sophisticated structure finders [see 7, for
an overview of (sub)halo/galaxy finding].

Here we present VELOCIraptor, a phase-space (sub)halo finder capable of
identifying dark matter halos and galaxies (freely available github.com/pelahi/
VELOCIraptor-STF. Documentation is found at velociraptor-stf.readthedocs.
io). This C++17 code uses the CMAKE build system, and MPI [1] plus OpenMP
[2] parallel APIs along with parallel HDF5 IO [6] to scale up to thousands of
cores across many nodes. We focus on novel application of MPI and OpenMP
APIs to improve performance of the code and provide only a brief summary of
the clustering algorithms used in the code.


https://orcid.org/0000-0002-6154-7224
https://github.com/pelahi/VELOCIraptor-STF.git
github.com/pelahi/VELOCIraptor-STF
https://github.com/pelahi/VELOCIraptor-STF.git
github.com/pelahi/VELOCIraptor-STF
http://velociraptor-stf.readthedocs.io/en/latest/
velociraptor-stf.readthedocs.io
http://velociraptor-stf.readthedocs.io/en/latest/
velociraptor-stf.readthedocs.io

2 P.J. Elahi

2 VELOCIraptor algorithm

The VELOCIraptor code can be called as a stand-alone executable or can
be integrated into an existing cosmological code. This has been done for the
SWIFTSIM Smooth-Particle Hydrodynamics code 9. The core algorithm can be
broken down into a few key steps, listed in Fig. 1. We briefly describe some key
algorithms here and for more details, we refer readers to [4].

Setup: Read configuration options. |

l

Input: Read input file & setup MPI decomposition if re-
quired.

Field Search: Each MPI process searches for field halos
(parent clusters), linking across MPI domains and localising
field halos to single MPI process. OpenMP enabled.

l

Substructure/Merger Search: Search for substruc-
tures/mergers in all (sub)structures large enough to have
substructures above the minimum number of particles. Re-
quires calculation of density field, which necessitates a near-
est neighbour search across MPI domains. OpenMP enabled.

|

Analysis: Calculate properties for all (sub)halos. Requires
calculation of specific properties across MPI domains.
OpenMP enabled.

Output: Outputs file(s) containing bulk properties and
the particle IDs of all particles within halos. Uses HDF5 to
write file(s) in parallel.

Fig. 1. Activity chart of VELOCIRAPTOR.

The code will first ingest a cosmological simulation data set that consists of
particles or a mesh which is mapped to a particle representation. This read is
MPI-enabled and will produce a load balanced decomposition (discussed in later
sections). It then identifies candidate halos (large physical overdensities) using a
3DFOF algorithm [3D Friends-of-Friends in configuration space, see 3|, linking
particles together if

<1, 1)
&



VELOCIraptor 3

N, = 1015257 [soFOF 7 GDFOF Groups]

Tidal Groups)

Fig. 2. Halo Decomposition: We show the process of running the routines that
decompose an initial FOF halo candidate into phase-space FOF halos (top row),
followed by the search for substructure. Here we emphasis three different classes of
substructures, standard, major merger (where the substructure is 2 10% of the host’s
particles), and loosely-bound tidal debris. For each object we show Ra,,, a size, by a
dashed black circle. Particles are colour-coded according to the 3D density (blue to
green for increasing density, left column), or by group membership (other columns). In
these group sub-panels: we show only groups composed of 2 100 particles for clarity;
list the total number of groups; the fraction of host in groups; the number of particles
for the 4 largest such groups; and show the parent 3DFOF halo’s particles and Ra,,
with gray points and a gray circle respectively.



4 P.J. Elahi

where x; is the i particle’s position, and £, is the linking length. This can be
again processed with a phase-space 6DFOF algorithm if desired.

The code will then ensure that all large-scale FOF halos reside within a
single MPI domain and then search for substructures (clusters-within-clusters)
using a higher dimensional phase-space FOF algorithm on particles that appear
to be dynamically distinct from the mean halo background. This portion is
computationally intensive.

Once all clusters and the relation to other clusters have been identified, the
code then does a significant amount of data analysis on the clusters, calculating
a wide-variety of properties. This portion is computationally intensive.

It then writes the results to disk using the HDF5 parallel 1O library. The main
output data consists of the properties of clusters and the particle IDs belonging
to the clusters. This output can be split into several files up to one file per MPI
process or can produce a single large file.

An example of the halos and substructures found by VELOCIraptor is pre-
sented in Fig. 2. Here, this single object is composed of a million particles and
a large simulation will contain many such clusters, hence the computational
challenge.

3 MPI

The challenge in this data analysis is that simulations can contain billions to
trillions of particles, each particle requiring ~ 100 bytes [see for instance 5, 10].
This necessitates the use of MPI to fit the problem of running and analysing
such simulations in memory. Here we describe how VELOCIraptor uses MPI to
ensure a load-balanced run with minimal communication and fast 10.

3.1 Domain decomposition

Z-curve domain decomposition Z-curve domain decomposition

MP1 Domain for Rank 0 MPI Domain for Rank 2

Fig. 3. MPI Decomposition: Decomposition of cubic volume using Z-curve (upper
row) and a more representative decomposition between 3 MPI processes for a non-
uniform particle distribution (bottom row).

Since input data consists of highly clustered data with a simulation volume,
load balancing is critical. This load balancing is not just about ensuring similar



VELOCTraptor 5

memory footprints per MPI process but also reducing the amount of point-to-
point communication between MPI processes. VELOCIraptor does this by using
a mesh placed across the input domain and then assigns cells in the mesh to
a given MPI process using a space-filling Z-curve. The space-filling curve, an
example of which is shown in Fig. 3, satisfies both requirements, assigning cells
to a given MPI process as it goes along with curve and ensuring most of the
volume assign to a MPI process is spatially clustered.

This decomposition is not static as clusters are localised to individual MPI
processes, resulting in cells within the mesh occasionally assigned to multiple MPI
processes. Clusters split across MPI processes are set to the MPI process with
the fewest particles in its MPI domain, ensuring load balancing is maintained.

3.2 Communication

The cluster identification process is spatially localised, however clusters can span
several MPI domains, each containing some fraction of the cluster. These means
that cluster identification process is dominated by point-to-point communication,
where each MPI process ¢ does not know a priori what other MPI processes
contain relevant particles, nor what other processes might require from it.

VELOCIraptor reduces the amount of communication using a combination
of approaches. All processes know to which processes a cell in the MPI mesh
belongs. Thus, as a MPI processes its particles is quickly able to determine if
a particle’s search window intersects the volume of a cell that belongs to other
MPI processes using a fast binary tree. It uses this information to construct a
communication work queue containing all communicating pairs and then iterates
over the pair:

Listing 1.1. MPI communication queue

//NProcs = total number of Process in MPI_COMM_WORLD
std::vector<tuple<int, int>> MPIGenerateCommPairs(unsigned long long
*send_info)
{
std::vector<std::tuple<int, int>> commpair;
for(auto taskl = 0; taskl < NProcs; taskl++)

{
for(auto task2 = taskl+l; task2 < NProcs; task2++)
{
if (send_info[taskl * NProcs + task2] == 0 &% send_info[task2
* NProcs + taskl] == 0) continue;
commpair.push_back(make_tuple(taskl, task2));
}
}
// ensure rank = 0 doesn’t dominate communication pairs by
randomizing

unsigned seed = 4322;

std: :shuffle(commpair.begin(), commpair.end(),
std::default_random_engine(seed)) ;

return commpair;



6 P.J. Elahi

//sample code calling comm pairs

//now send the data.

auto commpair = MPIGenerateCommPairs(mpi_nsend);
for(auto [taskl, task2]:commpair)

{
if (rank != taskl && rank != task2) continue;
auto [sendTask,recvTask] = MPISetSendRecvTask(taskl, task2);
// now proceed to point-to-point communication

}

This communication pattern is not just present in the first clustering process
but is also present when estimating the density field. At this point, particles
belonging to clusters have been localised, resulting in the MPI mesh with cells
shared between MPI processes. Estimating the density field proceeds by using a
fast binary tree on local particles to identify nearest neighbours. This nearest-
neighbour list is incomplete and the radius of the distant nearest-neighbour
of each particle is used to identify which MPI processes need to communicate.
These particles are then exported to appropriate MPI processes to identify on
those particles which particles need to be sent back. Again, this requires lots of
point-to-point communication.

Some properties of clusters, such as the total mass enclosed in a spherical
window centred on the cluster, also use a similar search of other MPI domains.

3.3 IO

VELOCIraptor uses the HDF5 library for writing parallel 10. However, it does
not simply have all MPI processes read input and write output, which could
produce significant amounts of MPI communication.

Input can be a single file or split between many files. VELOCIraptor can
read this data with multiple MPI processes, where the number of reading MPI
processes need not have any relation to the number of input files if the input is
HDFS5 input. Other raw binary data requires a single MPI process per input file.
The number of reading MPI processes can be a subset of the total number of
MPI processes and is set at runtime.

While reading input data, the code initialises two sets of communicators, one
for MPI processes that will read input data and determine where to send this data
and another that contains all the non-reading processes waiting to receive data.
It spreads the processes reading across the MPI_COMM_WORLD, as shown in Fig. 5.
MPI processes of similar rank are neighbours in the MPI domain decomposition
(see Section 3.1) so to minimise the amount of internode communication, reading
MPI processes are spread across the MPI_COMM_WORLD. This only happens if there
is some spatial clustering in the input data, which is often the case.



VELOCIraptor 7

Similarly, output is aggregated using the initialisation of MPI communicators,
one for each file to be produced. However, in this case, MPI processes are close to
each other in the MPI_COMM_WORLD, thereby reducing internode communication
when coordinating file writes as shown in Fig. 5 . The number of files produced

can also be set at runtime.

Fig. 4. MPI write process distribution: Example of 5 MPI reading processes in a
27 MPI process comm world reading single input file (top) and 3 files (middle). Here, 3
nodes each have 9 cores (indicated by blue region encompassing 9 squares). Cores with
MPI processes reading from/writing to the file are coloured, with colour depending on
file.

UL O
LTy BEE
(]

Fig.5. MPI read process distribution: Example of 8 files being written by a 27
MPI process comm world. Figure is similar to Fig. 4.

4 OpenMP

VELOCTIraptor makes extensive use of OpenMP parallelism throughout the
code. A key part of the code is its fast, purpose-built binary tree library [see
8, for discussion of binary trees|. Building an N-dimensional binary tree can
be time consuming, particularly if the space spanned by the tree requires non-
Euclidean distances to determine the distance between particles. To speed-up
tree construction, the code uses recursive task paralellism and a thread pool class
to ensure that the nested parallelism does not overproduce threads:

Listing 1.2. Recursive OpenMP-enabled Binary Tree build.

//thread pool class to manage recursive parallelism
struct KDTreeOMPThreadPool{



8

};

P.J. Elahi

unsigned int nthreads;
unsigned int nactivethreads;

vector<unsigned int> activethreadids;

//build tree
KDTree: :KDTree ()

{

}

// set some parameters

// then set a thread pool

KDTreeOMPThreadPool otp = OMPInitThreadPool();
root=BuildNodes (0,numparts, otp);
BuildNodeIDs () ;

// recusive node building
Node *KDTree::BuildNodes(int start, int end, KDTreeOMPThreadPool &otp)

{

// if a leaf node is found return leaf node, return leaf node

if (isleafflag) return new LeafNode(id, start, end, bnd, ND);

// otherwise recurively call buildnodes

// split input data

auto splitindex = start + (size - 1) / 2;
auto [splitvalue, splitdim] = SortData(...);

//run the node construction in parallel

if (otp.nactivethreads > 1) {
//note that if OpenMP not defined then ibuildinparallel is false
Node *left, *right;
vector<KDTreeOMPThreadPool> newotp = OMPSplitThreadPool (otp);
#pragma omp parallel default(shared) num_threads(2)
#pragma omp single

#pragma omp task
left = BuildNodes(start, splitindex+1, newotp[0]);
#pragma omp task
right = BuildNodes(splitindex+1l, end, newotp[1]);
#pragma omp taskwait

}

return new SplitNode(splitdim, splitvalue, size, start, end,
left, right);

}

// if not enough threads available, then just proceed with serial

recurisve calls

else {

return new SplitNode(splitdim, splitvalue, size, start, end,
BuildNodes(start, splitindex+1, otp),
BuildNodes(splitindex+1, end, otp));




VELOCTraptor 9

The other use of OpenMP is in the initial FOF cluster finding algorithm.
Each OpenMP thread is given a subset of particles to link in a given subvolume.
The linking across these subvolumes follows the same approach as the linking
across MPI domains. Initially, a thread private group association is determined
for particles in the subvolume. Then particles with search regions extending to
other OpenMP volumes are “exported” to the appropriate thread and linked
to relevant particles, with particle group associations iteratively updated. The
approach of mirroring an MPI approach is not common but this approach allows
the code to operate in a mode with minimal MPI decomposition, with each MPI
process having large number of particles and large number of threads and still
perform efficiently.

OpenMP is also used to parallelise some computationally heavy for loops.
The substructure search involves processing each parent structure independently.
Structures can vary greatly in size, with many consisting of a few tens of particles,
to others, such as in Fig. 2 composed of a million particles and containing hundreds
to thousands of substructures. Hence, we heavily use dynamic scheduling with a
chunk size of 1. A similar approach is taken when analysing the properties of each
structure. A large number of properties are calculated but most are independent
of any other structure.

5 Summary

We have presented VELOCIraptor, a C++17 MPI+OpenMP code and high-
lighted specific novel applications of MPI and OpenMP APIs to improve code
performance and scaling. Future work will involve more extensive use of OpenMP
task parallelism and the addition of GPU offloading. GPU offloading is of particu-
lar interest given the available compute but provides a significant challenge due to
current structure of processing structures independently and most clusters being
small. The required restructuring, though extensive, could provide a significant
performance boost.

Acknowledgements

We would like to acknowledge the Whadjuk people of the Noongar nation as
the traditional custodians of this country, where the Pawsey Supercomputing
Research Centre is located and where we live and work. We pay our respects
to Noongar elders past, present, and emerging. This work was supported by
resources provided by the Pawsey Supercomputing Research Centre with funding
from the Australian Government and the Government of Western Australia. PJE
would like to thank all the developers and authors of the original VELOCIraptor

paper.



Bibliography

[1] Message passing interface forum, mpi: A message-passing interface standard.
https://www.mpi-forum.org/, https://hpc.nmsu.edu/discovery/mpi/
introduction/ (Mar 1994), accessed: 2022-12-12

[2] Dagum, L., Menon, R.: OpenMP: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE 5(1), 46-55
(1998)

[3] Davis, M., Efstathiou, G., Frenk, C.S., White, S.D.M.: The evolution of
large-scale structure in a universe dominated by cold dark matter. The Astro-
physical Journal 292, 371-394 (May 1985). https://doi.org/10.1086 /163168

[4] Elahi, P.J., et al.: Hunting for galaxies and halos in simulations with VE-
LOCIraptor. Publications of the Astronomical Society of Australia 36, e021
(May 2019). https://doi.org/10.1017/pasa.2019.12

[5] Elahi, P.J., Welker, C., Power, C., Lagos, C.d.P., Robotham, A.S.G., Canas,

R., Poulton, R.: SURFS: Riding the waves with Synthetic UniveRses For

Surveys. Monthly Notices of the Royal Astronomical Society 475(4), 5338

5359 (Apr 2018). https://doi.org/10.1093 /mnras/sty061

Group, T.H.: Hierarchical data format, version 5. https://www.hdfgroup.

org/HDF5

[7] Knebe, A., Pearce, F.R., Lux, H., Ascasibar, Y., Behroozi, P., Casado, J.,
Moran, C.C., Diemand, J., Dolag, K., Dominguez-Tenreiro, R., Elahi, P.,
Falck, B., Gottléber, S., Han, J., Klypin, A., Luki¢, Z., Maciejewski, M.,
McBride, C.K., Merchan, M.E., Muldrew, S.I., Neyrinck, M., Onions, J.,
Planelles, S., Potter, D., Quilis, V., Rasera, Y., Ricker, P.M., Roy, F., Ruiz,
A.N., Sgro, M.A., Springel, V., Stadel, J., Sutter, P.M., Tweed, D., Zemp, M.:
Structure finding in cosmological simulations: the state of affairs. Monthly
Notices of the Royal Astronomical Society 435(2), 1618-1658 (Oct 2013).
https://doi.org/10.1093 /mnras,/stt1403

[8] Knuth, D.E.: The art of computer programming. Vol.1: Fundamental algo-
rithms (1978)

[9] Schaller, M., Borrow, J., Draper, P.W., Ivkovic, M., McAlpine, S., Van-
denbroucke, B., Bahé, Y., Chaikin, E., Chalk, A.B.G., Chan, T.K., Correa,
C., van Daalen, M., Elbers, W., Gonnet, P., Hausammann, L., Helly, J.,
Husko, F., Kegerreis, J.A., Nobels, F.S.J., Ploeckinger, S., Revaz, Y., Roper,
W.J., Ruiz-Bonilla, S., Sandnes, T.D., Uyttenhove, Y., Willis, J.S., Xiang,
Z.: SWIFT: A modern highly-parallel gravity and smoothed particle hydro-
dynamics solver for astrophysical and cosmological applications. Monthly
Notices of the Royal Astronomical Society 530(2), 2378-2419 (May 2024).
https://doi.org/10.1093 /mnras/stae922

[10] Schaye, J., Kugel, R., Schaller, M., Helly, J.C., Braspenning, J., Elbers,

W., McCarthy, I.G., van Daalen, M.P., Vandenbroucke, B., Frenk, C.S.,
Kwan, J., Salcido, J., Bahé, Y.M., Borrow, J., Chaikin, E., Hahn, O., Husko,
F., Jenkins, A., Lacey, C.G., Nobels, F.S.J.: The FLAMINGO project:

6


https://www.mpi-forum.org/
https://hpc.nmsu.edu/discovery/mpi/introduction/
https://hpc.nmsu.edu/discovery/mpi/introduction/
https://doi.org/10.1086/163168
https://doi.org/10.1017/pasa.2019.12
https://doi.org/10.1093/mnras/sty061
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5
https://doi.org/10.1093/mnras/stt1403
https://doi.org/10.1093/mnras/stae922

VELOCTraptor 11

cosmological hydrodynamical simulations for large-scale structure and galaxy
cluster surveys. Monthly Notices of the Royal Astronomical Society 526(4),
4978-5020 (Dec 2023). https://doi.org/10.1093 /mnras,/stad2419


https://doi.org/10.1093/mnras/stad2419

	VELOCIraptor: A MPI+OpenMP data analysis tool for cosmological simulations

