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Abstract. We present profile_util, a quick and simple way of profiling
codes. This is a MPI, OpenMP, and GPU enabled C+-17 library. The
GPU interface is compatible with both HIP and CUDA and is compatible
with more than a single GPU per MPI process. It provides a means of
logging MPI, OpenMP and GPU related information, such as number of
threads, core affinity, GPU properties. It can also be used to log memory
usage or available memory. The library can also report the time taken on
both host and devices, statistics of CPU usage, statistics of GPU usage,
memory usage and power. The simple API means minimal changes are
required to any C+-+ library.

1 Introduction

Addressing performance bottlenecks in a code is key to ensuring that it can
run efficiently at scale. Profiling tools are essential for identifying performance
issues by measuring various metrics such as CPU usage, GPU usage, memory
consumption, and execution time. There are a wide variety of tools that provide
a comprehensive view of a code. However, these are typically closed-source
commercial products, often requiring instrumenting a code, or are tailored to
a specific API (see for example Linaro Forge, Intel VTune, NVIDIA Nsight
Compute, Omniperf, Paraver|2]|, Tau[8], or ScoreP[6]). Moreover, they are not
designed to provide a view into a code’s performance in daily production-scale
runs, where minimal impact and a higher level view is desirable.

Here we present profile_util, an open-source library which can be simply
integrated into codes for production-scale runs (freely available https://github.
com/pelahi/profile_util.git. This C++17 code uses the CMAKE build
system, and MPI [1], OpenMP [3]|, and GPU (CUDA and HIP) parallel APIs.

2 Description

The library is designed so that it can be built with any one or combination of
OpenMP, MPI, and CUDA /HIP or even for codes that are purely serial. The
library only makes use of the C++17 standard library, the relevant libraries
required for the desired parallelism profiling, and a few simple Linux utilities,
such as ps or for GPUs, nvidia-smi/rocm-smi.
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Inclusion into a code base is a matter of using a simple set of APIs and
compiling the code with the appropriate library. An example is provided and we
will discuss some key API calls.

Listing 1.1. Sample code using the API

// simple MPI+OpenMP code
#include <iostream>
#include <vector>
#include <mpi.h>
// include the profile_uti.h header
#include <profile_util.h>
int main() {
// init MPI
MPI_Init(&argc, &argv);
MPI_Comm comm = MPI_COMM_WORLD;
// Set the Logging communicator of the profile util library
MPISetLoggingComm(comm) ;
// a call to get parallel information of code
LogParallelAPI();
// a call to get thread affinity
LogBinding () ;
// construct timer for openmp loop
auto timer = NewTimer();
std::vector<double> vec(100); auto sum = 0.0;
// parallel loop, add LOGGING() to ensure openmp logging.
#pragma omp parallel default(none) shared(vec) LOGGING()
reduction(+:sum)

{
// get affinity for every thread spawned.
#pragma omp critical
LogThreadAffinity();
#pragma omp for
for (auto &x:vec) {sum+=x;}
}

//report time taken
LogTimeTaken (timer) ;
MPI_Finalize(); return O;

Listing 1.2. Sample build

g++ -L/<path/lib> -I/<path>/include -lprofile_util source.cpp -o exe

The key API calls fall into several categories: general parallel information,
timing and performance, and memory. Every logging call will report what rank
called the routine, from what function and what line in the file and at what time.
The API uses std::cout for Logx() calls but there is also an interface where
the user can pass a specific ostream using Logger* (ostream) calls. There are
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also MPI variants where only rank 0 in the communicator passed to the library
reports the information, MPIRank0* ()

2.1 General parallel information

These calls can provide information about the number of MPI ranks, number of
threads, the core affinity for MPI process, the number of GPUs per MPI process
and the information about the GPUs. The key calls are:

eLogParallelAPI() reports the parallel API’s used. Example output:

Parallel API’s

MPI Comm world size 2

OpenMP version 201811 with total number of threads = 2 with total number
of allowed levels 1

Using GPUs: Running with HIP and found 4 devices

eLogBinding() reports the overall binding of cores, GPU information (such
as PCI address) for every MPI process. Example output:

Core Binding

On node nid003012 : MPI Rank O : OMP Thread O : at nested level 1 : Core
affinity = 0-7

On node nid003012 : MPI Rank O : OMP Thread 1 : at nested level 1 : Core
affinity = 0-7

Current runtime environment gpu list is :0,1

On node nid003012 : MPI Rank O : GPU device O Device_Name=
Bus_ID=0000:c1:00.0 Compute_Units=110 Max_Work_Group_Size=64
Local_Mem_Size=65536 Global_Mem_Size=68702699520

On node nid003012 : MPI Rank O : GPU device 1 Device_Name=
Bus_ID=0000:c6:00.0 Compute_Units=110 Max_Work_Group_Size=64
Local_Mem_Size=65536 Global_Mem_Size=68702699520

eLogThreadAffinity () reports core affinity of threads of a given MPI rank
and is designed to be called in a OpenMP environment to see if there are issues
with oversubscription.

2.2 Timing & Performance

The library provides a timer class, which allows code to be profiled with minimal
additions. This timer can wrap specific calls and is ideal for providing general
timing information of key functions, allowing users to check if performance has
been greatly impacted when moving architecture or updating the code in a quick
fashion. It requires creating a Timer object with auto timer = NewTimer() ;.
The relevant calls are:

elogTimeTaken (timer) reports the time taken from creation of Timer to
point at which this function is called. Example output:
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@allocate_mem_host L132 (Wed Jul 24 13:41:03 2024) : Time taken between
: @allocate_mem_host L132 - @allocate_mem_host L106 : 1.296 [s]

eLogTimeTakenOnDevice (timer) reports the time taken on the GPU device
from the creation of the Timer and when this function is called. This makes use
of the creation of device events. If the current device is not the one upon creation,
the code will move to the device upon creation to get the elapsed time and then
move back to the current device. Example output:

@allocate_mem_gpu L177 (Wed Jul 24 13:41:03 2024) : Time taken on device
between : @allocate_mem_gpu L177 - @allocate_mem_gpu L158 : 33 [us]

These timers are local to each MPI process. Work is in progress to add a
simple API to synchronize, generate and collect a timer across all MPI process
in a given MPI communicator and report summary of all times or a statistics of
the timing. Currently, some codes taking this approach make use of calls within
the profiling_util namespace and the timer class functions.

The library also provides a Sampler class which uses C++ threads to spawn
monitoring processes to get quantities like CPU usage, GPU usage and energy,
reporting back the average, standard deviation, minimum and maximum during
the sampled period. Like the Timer class, it does require creating a sampler
with auto sampler = NewSampler(sample_time_in_seconds); and, like the
timers, samplers are local to each MPI process. The sampler stores information
from external process in a hidden file!, that are processed for statistics over some
time interval. The relevant calls are:

eLogCPUUsage (sampler) reports the CPU usage over the time sampled. Ex-
ample output:

@Gmain L386 (Wed Jul 24 13:41:19 2024) : CPU Usage (%) statistics taken
between : @main L386 - @main L353 over 15.532 [s]
[ave,std,min,max] = [ 4458.294, 78.093, 95.200, 5536.000 ]

eLogGPUUsage (sampler) reports the GPU usage of all visible GPUs. Relies
on using nvidia-smi or rocm-smi. Example output:

@main L387 (Wed Jul 24 13:41:19 2024) : GPUO Usage (%) statistics taken
between : @main L387 - @main L353 over 15.559 [s]
[ave,std,min,max] = [ 75.558, 3.619, 0.000, 100.000 ]

eLogGPUEnergy (sampler) like LogGPUUsage (sampler) but reports power
consumption along with total energy consumed.

eLogGPUMem(sampler) like LogGPUUsage (sampler) but reports memory.

oLogGPUMemUsage (sampler) like LogGPUUsage (sampler) but reports mem-
ory in percent used.

! Files are located in the runtime directory. Name is
.sampler.<properties>.<unique_id>.txt
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eLogGPUStatistics(sampler) like LogGPUUsage (sampler) but reports all
aspects of GPU state (usage, memory, power).

2.3 Memory

These APIs report the memory usage by the process and state of memory on the
node that the process is running on. Key APIs are:

eLogMemUsage () reports current and peak memory usage by the process.
Example output:

[00000] @main L947 (Wed Jul 24 11:00:56 2024) : Node memory report @
main L947 :
Node : nid002950 : VM current/peak/change : 33.097 [GiB] / 91.230
[MiB] / 0 [B]; RSS current/peak/change : 183.777 [MiB] / 0 [B] /
0 [B]

eLogSystemMem() reports the memory state of the node on which the process
is running. Example output:

[00000] @main L948 (Wed Jul 24 11:00:56 2024) : Node system memory
report @ main L948 :
Node : nid002950 : Total : 251.193 [GiB]; Used : 24.997 [GiB]; Free
: 229.620 [GiB]; Shared: 1.429 [GiB]; Cache : 7.451 [GiB]; Avail
: 226.196 [GiB];

3 Use-cases

3.1 MPI performance

A number of users of the Setonix HPE Cray EX system located at the Pawsey
Supercomputing centre were having issues running MPI jobs [We refer readers
to 5, for more details|. Multi-node jobs with many MPI processes with large
message sizes and internode communication were crashing with numerous different
reported errors. The error messages were varied and a single code could encounter
all of them if run multiple times, so initially, it was not obvious what was causing
the wide variety of errors. Due to the severity of the crashes, core dumps were not
particularly useful. Further investigations using open-source codes with useful
logging information (such as VELOCIraptor, [4] and SWIFTSIM, [7]) indicated
the errors occurred during MPI communication and were more likely to occur
with increasing per node memory usage and/or increasing message sizes.

By incorporating the library into a simple MPI unit, we were able to gain
invaluable information. The logs produced by the code showed that the available
node memory did not match the memory used by the MPI processes plus that
required for running the OS. Significantly more memory was being used if and
only if after some communication had occurred. It became quite clear based on
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the logs that the MPI associated libraries had at least one memory leak and
these leaks only occurred when multi-node communication was involved.

For example, running a 8 node, 50 MPI process per node job would show
during an MPI_Allreduce that the code along with the OS expected to use
~ 77 GB of memory yet library would report ~ 105 GB being consumed on the
node. As the number of processes increased, this unaccounted for excess memory
would increase as well, along with the likelihood of encountering uninformative
errors like "bus error". This information combined with extra information of
node state was vital to HPE Cray for diagnosing the issue.

3.2 GPU performance

While running on an Nvidia Grace Hopper system, users encountered unusual
performance degradation in the Hopper GPU. There were indications that this
degradation was occurring when the load on the Grace CPU was high. Again, by
incorporating the library into a simple code designed to run compute on both
CPUs and GPUs at the same time we were able to confirm and quantify the
degradation and when it occurred.
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Fig. 1. GH200 Performance: Time taken to run a kernel on GPU and CPU as the
number of threads running on the Grace CPU is increased normalized by the time taken
when a single thread is running on the Grace CPU. Worse performance is values > 1.

In Fig. 1, we show the time taken to complete a computationally intensive,
CPU bound kernel on the CPU and GPU as the number of CPU threads is
increased. There is a small steady increase in the time taken on the GPU to
complete the kernel till ~ 54 cores are running on the Grace CPU. At this point,
there is a marked increase in the time taken on the GPU and the CPU as well,
with GPU slowing down by ~ 15% and CPUs slowing down by ~ 20 — 30%.

Looking at the CPU and GPU usage and parallel efficiency in Fig. 2, it is not
a reduction in usage. The usage and maximum usage does not drop significantly
at the same point at which there is a noticeable performance drop. In fact, for the
Grace CPU, there is an increase in the amount of usage and efficiency. There is a
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Fig. 2. GH200 Usage: Grace usage (blue points) and efficiency (red points) as number
of threads increased (top) and Hopper Usage. For both, we plot the average + standard
deviation along with the maximum (blue triangles and open red points).
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Fig. 3. GH200 Power: Power (blue) and energy (red) consumed by Hopper. We plot
the average + standard deviation along with the maximum for the power. We plot the
running mean as well.
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drop in the average GPU usage and increased variability, though the maximum
remains the same.

The Hopper’s drop in average usage is reflected in the drop in average power
consumed as seen in Fig. 3. This analysis is operationally informative since it
allows us to configure a GH200 based cluster and inform HPC Centres how they
may want to setup shared GH200 access.

4 Summary

We have presented profile_util, a C++17 MPI, OpenMP, and GPU enabled
library that can be incorporated into an existing code base with minimal changes.
We highlight two cases where this approach to profiling was very useful in
identifying performance and stability issues. Future work will add interfaces for
Intel GPUs using sycl and oneAPI.

Acknowledgements

We would like to acknowledge the Whadjuk people of the Noongar nation as
the traditional custodians of this country, where the Pawsey Supercomputing
Research Centre is located and where we live and work. We pay our respects
to Noongar elders past, present, and emerging. This work was supported by
resources provided by the Pawsey Supercomputing Research Centre with funding
from the Australian Government and the Government of Western Australia.



Bibliography

[1] Message passing interface forum, mpi: A message-passing interface stan-
dard. https://www.mpi-forum.org/, https://hpc.nmsu.edu/discovery/
mpi/introduction/ (March 1994), accessed: 2022-12-12

[2] Computadors, D., Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A
tool to visualize and analyze parallel code. WoTUG-18 44 (03 1995)

[3] Dagum, L., Menon, R.: OpenMP: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE 5(1), 46-55 (1998)

[4] Elahi, P.J., et al.: Hunting for galaxies and halos in simulations with VE-
LOCIraptor. Publications of the Astronomical Society of Australia 36, e021
(May 2019). https://doi.org/10.1017 /pasa.2019.12

[5] Elahi, P.J., Meyer, C.: Stress-less MPI Stress Tests. In: CUG23. CUG, vol. 2023
(May 2023)

[6] Kniipfer, A., Rossel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler,
D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y.,
Philippen, P., Saviankou, P., Schmidl, D., Shende, S., Tschiiter, R., Wagner,
M., Wesarg, B., Wolf, F.: Score-p: A joint performance measurement run-time
infrastructure for periscope,scalasca, tau, and vampir. In: Brunst, H., Miiller,
M.S., Nagel, W.E., Resch, M.M. (eds.) Tools for High Performance Computing
2011. pp. 79-91. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[7] Schaller, M., Borrow, J., Draper, P.W., Ivkovic, M., McAlpine, S., Van-
denbroucke, B., Bahé, Y., Chaikin, E., Chalk, A.B.G., Chan, T.K., Correa,
C., van Daalen, M., Elbers, W., Gonnet, P., Hausammann, L., Helly, J.,
Husko, F., Kegerreis, J.A., Nobels, F.S.J., Ploeckinger, S., Revaz, Y., Roper,
W.J., Ruiz-Bonilla, S., Sandnes, T.D., Uyttenhove, Y., Willis, J.S., Xiang,
Z.: SWIFT: A modern highly-parallel gravity and smoothed particle hydro-
dynamics solver for astrophysical and cosmological applications. Monthly
Notices of the Royal Astronomical Society 530(2), 2378-2419 (May 2024).
https://doi.org,/10.1093 /mnras/stae922

[8] Shende, S.S., Malony, A.D.: The tau parallel performance system. The Inter-
national Journal of High Performance Computing Applications 20(2), 287-311
(2006). https://doi.org/10.1177/1094342006064482


https://www.mpi-forum.org/
https://hpc.nmsu.edu/discovery/mpi/introduction/
https://hpc.nmsu.edu/discovery/mpi/introduction/
https://doi.org/10.1017/pasa.2019.12
https://doi.org/10.1093/mnras/stae922
https://doi.org/10.1177/1094342006064482

	Profile Util library: A quick and easy way to get MPI, OpenMP and GPU runtime information

