
Quantum Algorithm Design with QuOp_MPI

E. Matwiejew1

Pawsey Supercomputing Research Centre, 1 Bryce Ave, Kensington Western Australia
6151

edric.matwiejew@CSIRO.au

Abstract. QuOp_MPI is a framework for designing and benchmark-
ing quantum variational algorithms (QVA) by quantum simulation. The
package provides a highly customisable Python interface to performant
MPI-parallel backends, enabling researchers to write concise and scal-
able simulation code. We present recent results for the integration of
GPU acceleration using the open-source HIP programming model into
QuOp_MPI to support scalable simulation workflows on the current
generation of clusters with heterogeneous computing environments.

Keywords: MPI · HIP · Heterogeneous Parallel Computing · Quantum
Computing · Quantum Optimisation

Quantum Variational Algorithms (QVAs) represent a promising approach
to solving complex optimisation problems by leveraging the unique strengths of
both quantum and classical computing paradigms [3, 10]. At their core, QVAs for
optimisation are defined by an ansatz unitary consisting of interleaved, classically
parameterised phase-shift ÛQ and mixing unitaries ÛW , which are applied to
an initial superposition state |ψ0⟩ whose basis states represent the problem’s
solution space, and a specified number of iterations p:

|γ, t⟩ =
p∏

i=1

ÛW (ti)ÛQ(γi) |ψ0⟩ . (1)

Both the phase-shift and mixing unitaries are defined by the time evolution
unitary exp

(
−iθĤ

)
with a time-independent Hamiltonian Ĥ and θ ∈ R. In the

phase-shift unitary, the evolution is parameterised by θ = γ, and the Hamiltonian
Ĥ = Q̂ is a diagonal operator that encodes the solution costs into the phase of
|ψ0⟩. The mixing unitary is parameterised by one or more parameters θ = t, with
its action defined by a Hamiltonian with non-zero off-diagonal elements Ĥ = Ŵ .
By varying the ansatz parameters (γ, t) to minimise the average measured solution
cost ⟨Q⟩, interference is manipulated to amplify the probability of measuring
low-cost solutions, with the amount of possible amplification increasing with the
iteration count p. These algorithms are of considerable interest as they are robust
to noise and have a flexible structure targeting near-term Noisy Intermediate-Scale
Quantum (NISQ) processors [3, 8, 10].

https://orcid.org/0000-0002-2480-1633


2 E. Matwiejew

However, the path towards the deployment of practical QVAs is not straight-
forward; the design of practical QVAs faces multiple challenges. The quantum
dynamics involved in these algorithms are often complex, precluding analytical
proofs of performance or scalability. Consequently, performance advantages over
classical methods have only been demonstrated for a limited number of specific
instances. Furthermore, current quantum processors are constrained in both
the number of qubits and coherence time, making it difficult to validate and
benchmark QVAs on actual quantum hardware [1, 9, 11]. As a result, researchers
rely heavily on high-performance simulations, which are computationally inten-
sive and require domain-specific expertise. To address these challenges, we have
developed QuOp_MPI [7], a framework for the design and benchmarking of
QVAs by parallel simulation.

QuOp_MPI enables the rapid prototyping of novel algorithms by providing
a modular Python interface to MPI-parallel backends that provide high-precision
state vector simulation of the fundamental unitary dynamics. This allows re-
searchers to focus on their research goals while writing concise simulation programs
that can scale from their laptop to hundreds of compute nodes [6, 7]. A workflow
based on user-definable Python functions that are incorporated into the parallel
simulation workflow at run-time achieves dynamic and flexible control of the
algorithm unitaries and parameter optimisation scheme.

QuOp_MPI adopts a simulation approach that targets Hamiltonian structures
efficiently implemented on quantum processors. Algorithms are defined in Python
using ‘unitary’ building blocks that provide an interface to compile extension
modules that implement numerical methods optimised according to the adjacency
structure of the Hamiltonian [7]. QuOp_MPI dynamically determines the parallel
distribution of the state-vector and MPI communication structures according to
the backends associated with the simulation instance, allowing users to leverage
a combination of MPI-parallel sparse matrix and FFT-based simulation methods
through a unified interface.

Recent development has focussed on integrating GPU-accelerated methods
into the existing QuOp_MPI codebase through the QuOp_Wavefront backend.
This integration leverages distributed memory parallelism with MPI and shared-
memory parallelism through GPU acceleration using the open-source HIP pro-
gramming model. Here, we describe a high-dimensional Fast Fourier Transform
(FFT) based method for the simulation QVAs for unconstrained combinatorial
optimisation problems and benchmark its performance on Setonix, a 30 PetaFlop
HPE Cray EX system hosted at the Pawsey Supercomputing Research Centre.

1 QuOp_Wavefront

The QuOp_Wavefront is a GPU-accelerated backend for QuOp_MPI that integrates
with the Fortran context and propagator interface classes, available from version
1.2 of the package onwards. A single context instance manages buffers for the
initial and evolved state vectors and handles common operations, including
computation of the expectation value ⟨Q⟩. Multiple propagator instances point



Quantum Algorithm Design with QuOp_MPI 3

to the context instance, with each computing the action of a specific unitary
type on the state vector via an MPI-parallelised numerical method, interfacing
with the QuOp_MPI Python layer through a consistent interface. At run-time,
the context determines a partitioning scheme for the state vector and other
distributed arrays, which is modified by the propagator instances to arrive at a
scheme compatible with their respective numerical methods.

The communicator structure of the GPU-enabled backend is shown in Fig. 1a.
A partitioning of the state vector across the available GPUs is first determined,
defined by the number of local state vector elements and their corresponding global
index offsets, with one MPI process assigned to each device. This partitioning also
defines sub-communicators that contain processes within the same shared memory
space, denoted as NODE_COMM_i, which may include processes not associated with
a device. Generation of the initial state, observables, and other user-defined data
structures occur on the host over this communicator as part of the simulation
setup phase in the Python layer. This approach maintains the flexibility of the
Python-interpreted environment while maximising the use of the available CPU
cores, which typically outnumber the GPUs by several factors. Buffer transfer
from the host to devices uses HIP inter-process communication handles, as
shown in Fig. 1b, with device memory access synchronised through blocking
point-to-point communication.

(a) (b)

Fig. 1: (a) MPI communicator structure of a QuOp_Wavefront QVA simulation
instance with two compute nodes. The DEVICE_COMM communicator contains
processes that are assigned to a GPU, NODE_COMM_i and DEVICE_COMM_i contain
processes in the same shared memory space on the host and ANSATZ_COMM is
the global communicator for the simulation instance. (b) Data transfer from
process Pi,k to a buffer on device Di,j which is allocated on process Pi,j . The
hipIpcMemHandle instance is sent to Pi,k by point-to-point communication over
NODE_COMM_i.



4 E. Matwiejew

2 Mixing Unitary Simulation with High-Dimensional Fast
Fourier Transforms

In unconstrained combinatorial optimisation problems, the solution space is of
the form,

S ∼= X⊗n = X × X × · · · × X︸ ︷︷ ︸
n times

, (2)

where X is an ordered set containing the possible values for each combinatorial
variable [5].

In terms of the number of iterations required for substantial amplification, a
class of Ŵ that is often efficient for this problem type is given by the adjacency
matrix of the Hamming graphs on m−tuples, which connect between solutions
that differ in exactly one of their combinatorial variables [2, 5]. These are defined
as,

H = K×n
|X | , (3)

where K|X | = I|X | − δij is the adjacency matrix of a complete graph and ×n is
the Cartesian product of the matrix n times. As K|X | is a circulant matrix, ÛW

can be efficiently simulated using an n−dimensional FFT as,

|ψ(t)⟩ =
n−1⊗
j=0

(
F−1

ij
e−itjΛ̂ijFij

)
|ψ0⟩ , (4)

where F is the the discrete Fourier transform, |ψ0⟩ =
⊗n−1

j=0 αi,j |ij⟩ with i ∈
0, . . . ,m− 1 and Λ̂ = (|X | − 1,−1, . . . ,−1|) are the eigenvalues of the j-th K|X |.

To achieve this in MPI parallel, QuOp_Wavefront utilises a method pro-
posed by Dalcin et al. whereby the state vector is distributed as a balanced
block-contiguous slab decomposition over sub-communicators formed from the
dimensions of a cartesian communicator and global redistributions are performed
using an MPI_AlltoAllw with subarray derived datatypes, avoiding the need for
local transpositions [4].

To simulate an iteration of a QVA according to Eq. (1), the action of the
phase-shift operator is first computed as,

A(γ)
i0,...,in−1

= exp
(
−iγqi0,...,in−1

)
A(0)

i0,...,in−1
.

where tensor Ai0,...,in−1 contains the coefficeints of the state vector according to
the structure of Eq. (2) and qi0,...,in−1 ∈ Q̂. Next, an n − dimensional FFT is
performed over the contiguous coordinates of A(γ),

A(γ)
i0/P0,...,im−1/Pm−1,ik+m,...,in−1

DFT{ik+1,...,in−1}
−−−−−−−−−−−−→ Ã(γ)

i0/P0,...,im−1/Pm−1,jk+m−1,...,jn−1
,



Quantum Algorithm Design with QuOp_MPI 5

where ij/Pl denotes a coordinate that is partitioned over Pl processes. The
non-contiguous dimensions are then redistributed as,

Ã(γ)
i0/P0,...,im−1/Pm−1,jk+m−1,...,jn−1

→ Ã(γ)
i0,...,im−1,jk+m−1,...,jn−m−1/P0,...,jn−1/Pm−1

,

which, for a tensor with L distributed dimensions, requires L − 1 calls to
MPI_AlltoAllw. The local FFTs at each stage are performed using the hipFFT
FFT marshalling library, with local transforms higher than three dimensions
performed as a minimal sequence of lower-dimensional batched transforms. The
eigenvalue phase shift in Fourier space (see Eq. (4)) is then computed as,

Ã(γ,t)
i0,...,in−1

= exp
(
−itikλi0,...,in−1

)
Ã(γ)

i0,...,in−1
.

After which, the inverse set of transforms and exchanges are performed to obtain
the final evolved state.

3 Results

(a) (b) (c)

Fig. 2: (a) Weak scaling for computation of A(γ,t) of dimensions 210 × 210 × 210

and (b) the subarray size in each call to MPI_AlltoAllw with the mean transfer
time shown as annotations. (b) Shows the weak scaling behaviour for simulation
of Aγ,t where for N nodes, the first 6 − log2(N) dimensions have size 25, and
the remaining dimensions have size 26. Each node has 16 MPI processes and 8
GPUs.

Strong and weak scaling benchmarks for the FFT-based state evaluation
method described in Section 2 were performed on the ‘Setonix’ HPE Cray EX
system hosted at the Pawsey Supercomputing Research Centre. Each node was
configured with an AMD EPYC 7A53 64-Core GPU, eight AMD MI250X GPUs
and 256 GB RAM. To benchmark the base performance of the package, the
diagonal of Q was generated as a constant NumPy array. State propagation was
simulated with p = 5 iterations for five repeats.

Strong scaling results are shown in Fig. 2a, where for 1, 2, 4 and 8 nodes, the
dimensions of the initial cartesian communicator were 4×2×1, 4×4×1, 8×1×1



6 E. Matwiejew

and 8× 8× 1, with three batches of one-dimensional FFTs and two redistribution
operations required to compute the three-dimensional transform in one direction.
As shown in Fig. 2b, the MPI_AlltoAllw operation is the dominant factor in
program run-time as a doubling in devices halves the data communicated with
each redistribution by a factor of two.

The weak scaling behaviour is shown in Fig. 2c, where for 1, 2, 4, 8 and 16
nodes the initial cartesian communicator had dimensions 4 × 2 × 1 × · · · × 1,
4×2×1×· · ·×1, 4×4×1×· · ·×1, 8×4×1×· · ·×1 and 8×8×1×· · ·×1. The
computation is again memory-bound, however, the efficiency at two nodes and
higher is close to 0.6 as the balanced block decomposition ensures that the total
data sent to and from each device in an exchange operation remains constant.

4 Conclusion

These results demonstrate that the high-dimensional FFT-based simulation
method employed by the QuOp_Wavefront backend for Hamming-graph-based
QVAs is efficient and scalable in the strong and weak scaling regimes. Future
work will address the memory-efficient simulation of QVAs with mixing unitaries
defined by sparse Hamiltonians.

References

1. Anschuetz, E.R., Kiani, B.T.: Quantum variational algorithms are swamped with
traps. Nature Communications 13(1), 7760 (2022)

2. Bennett, T., Noakes, L., Wang, J.: Non-variational Quantum Combinatorial Opti-
misation. arXiv preprint arXiv:2404.03167 (2024)

3. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K.,
McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum
algorithms. Nature Reviews Physics 3(9), 625–644 (2021)

4. Dalcin, L., Mortensen, M., Keyes, D.E.: Fast Parallel Multidimensional FFT Using
Advanced MPI. Journal of Parallel and Distributed Computing 128, 137–150 (2019)

5. Matwiejew, E., Wang, J.: Quantum walk informed variational algorithm design.
arXiv preprint arXiv:2406.11620 (2024)

6. Matwiejew, E., Pye, J., Wang, J.B.: Quantum optimisation for continuous multi-
variable functions by a structured search. Quantum Science and Technology 8(4),
045013 (2023)

7. Matwiejew, E., Wang, J.B.: QuOp_MPI: A framework for parallel simulation of
quantum variational algorithms. Journal of Computational Science 62, 101711
(2022)

8. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

9. Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing.
(2019). arXiv: 1901.01903 [quant-ph]

10. Symons, B.C., Galvin, D., Sahin, E., Alexandrov, V., Mensa, S.: A practitioner’s
guide to quantum algorithms for optimisation problems. Journal of Physics A:
Mathematical and Theoretical 56(45), 453001 (2023)

https://arxiv.org/abs/1901.01903


Quantum Algorithm Design with QuOp_MPI 7

11. Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-term
devices. Physical Review X 10(2), 021067 (2020)


	Quantum Algorithm Design with QuOp_MPI

