Benchmarking the State of MPI Partitioned
Communication in Open MPI

Axel Schneewind! and Christoph Niethammer! &

HLRS, Nobelstr. 19, 70569 Stuttgart, Germany
niethammer@hlrs.de

Abstract. The MPI 4.0 standard introduced partitioned communica-
tion for point-to-point messaging in 2021. This work evaluates the current
state of the implementation in Open MPI for multi-threaded applications
using a synthetic benchmark. A comparison to solutions using alterna-
tive communication schemes is made. The obtained results show that
there can be some performance benefits with Open MPI. To understand
the results for Open MPI, a brief look into the implementation is made.
Based on this, some suggestion to improve the performance using a sim-
ple partition aggregation algorithm is made. Initial results for this are
presented showcasing gains for small partition sizes, i.e., large partition
counts.

Keywords: MPI - Benchmarking - Partitioned Communication.

1 Introduction

Looking at the TOP 500 list [5] today’s HPC systems come normally equipped
with CPUs that have several dozens of cores and are accompanied by GPGPUs
with several hundreds of compute units that can run thousands of threads in
parallel. This hardware trend requires HPC applications to use hybrid paral-
lelism where classical MPI parallelizations are combined with shared memory
parallelism, i.e., MPI+threads. However, this leads to issues when it comes to
data exchange using MPI. MPI requires that message buffers are not modified
after passing it to some MPI communication method. In case such buffers are
related to thread parallel computations, those have to be synchronized before
the MPI operation using the buffer can be started. As a result load imbalances
in the shared memory parallelization are exposed and limit the scalability of
the application. Further potential for overlapping communication and compu-
tation is lost - especially for larger buffers. In an alternative approach, each
thread can issue MPI communication operations on its own - i.e., using the
MPI THREAD MULTIPLE style. However, the aforementioned high number
of threads brings MPI libraries and their internal messaging system to their
limits in terms of scalability for a single MPI process due to overheads. A solu-
tion for this is the partitioned communication interface introduced in MPI 4.0 in
2021 [1]. Since then MPI libraries have now picked up and implemented this new
interface. As a next step, these implementations are now getting optimized [2].

https://orcid.org/0000-0002-3840-1016

2 A. Schneewind and C. Niethammer

Within this work, the implementation of Open MPIT [4] is reviewed in terms
of its current performance. Therefore a benchmark is developed to compare vari-
ous schemes that implement the partitioned communication pattern with various
MPI methods against the now native partitioned communication interface im-
plementation.

The contribution is structured as follows: First, some background around
partitioned communication and its application for MPI+thread parallel pro-
gramming in a CPU-centric execution context is provided. Section 3 looks at the
implementations in Open MPI to elaborate on the later results and we suggest an
aggregation algorithm to improve performance. In Section 4 the benchmark used
for the evaluation is described together with the different schemes for marking
partitions ready for transfer. In the following Section 5 results from the mea-
surements are shown and discussed. Initial results for a basic implementation
of our proposed aggregation algorithm are provided that show gains for small
partitions, i.e., large partition counts.

2 Background

MPI offers different Point-to-point communication methods, which mainly differ
in their respective interfaces and the amount of control they provide over the
different phases of a transfer (i.e. initialization, starting, completion and free-
ing) [3]. Figure 1 shows flow diagrams of the ones that are relevant for this work.
The most simple transfer mechanism is MPI_Send (blocking send), which per-
forms all initialization, starting, completion and freeing steps associated with a
transfer. Performing all transfer steps through a single function call, interrupts
the calling application, preventing it from performing useful computations.

For this reason, nonblocking mechanisms can provide better overall perfor-
mance. These separate the starting step from the completion of a transfer, al-
lowing the application to continue running while a transfer is in progress. In the
following, persistent send operations will be considered, which offers a separate
function call for each transfer step.

Compared to persistent send, partitioned communication increases the gran-
ularity of the starting phase. Instead of marking an entire buffer of data as ready
for transfer, the application can mark parts of it as ready through the additional
MPI Pready method. In the initialization step the application has to specify
the partitioning of the data (by providing the size and number of partitions).
The number of partitions may differ between the sender and receiver side.

2.1 Possible optimizations and performance improvements

Early-bird effect: As computations within an MPI process are often paral-
lelized using CPU or GPU threads, parts of the data can be ready to transfer
before others. By allowing partitions of the data to be marked ready individually,
the MPI implementation can start transferring data as soon as the first partition
is ready, instead of waiting for the entire buffer to be marked ready. As a result,

Benchmarking the State of MPI Partitioned Communication in Open MPI 3

partitioned communication can provide more overlap between computation and
communication, reducing overall time.

Flexibility concerning the implementation of Pready As the MPI stan-
dard poses few requirements on the Pready operation (most importantly, Pready
does not have to start any transfer), an implementation can optimize the func-
tion for concurrent access with high thread counts. As Pready does not have
to interact with network interfaces, it can also be implemented without re-
quiring locks (in contrast to e.g. MPI Send), possibly reducing overhead. Fur-
ther, MPI Pready can also be implemented such that it can be called by GPU
threads.

Message aggregation: Generally, transferring a few large messages instead of
many smaller ones reduces communication time, as each message is associated
with some overhead on the sending and receiving side. Therefore, a partitioned
transfer can be optimized by aggregating multiple partitions in a single message.
In particular, while a transfer is in progress, an implementation does not have
to initiate new transfers for each MPI_Pready call as these would have to wait.
Instead, the implementation might wait until the running transfer is done and
check if there are partitions ready that can be aggregated.

MPI_Wait
MPI_Request_free

MPI_Send_init MPI_Psend_init
Starting MPI_Start MPI_Start
MPI_Send l MPI_Pready] l MPI_Pready] l MPI_Pready
Completion MPI_Wait
MPI_Requestree

Transfer phases Blocking Send Persistent Send Partitioned Send
(similar: Nonblocking (since MPI-4.0)
Isend)

Fig. 1: Flow diagrams of different point-to-point interfaces

3 Current implementation and suggested improvement

3.1 Current implementation

OpenMPI As for version 5.0.3, OpenMPI implements partitioned transfers
using its persistent send. More precisely, each partition is mapped to an inter-
nal persistent send request. On MPI_Pready() being called on any partition,
the corresponding send request is started. Further, OpenMPI’s progress engine
occasionally calls MPI_Test() on the currently active requests.

4 A. Schneewind and C. Niethammer
3.2 Partition aggregation

In the following, a simple method of partition aggregation is described (see also
Figure 2). It mainly consists of an m-to-1-mapping of user-provided partitions
to internal partitions (assuming that the number of user partitions is a multiple
of m). For the benchmarks, this is done by translating the Psend request that
the user interacts with to an internal Psend-request with a different partitioning.
However, this method could be integrated into OpenMPI directly without much
modification required.

To track whether internal partitions are ready for transfer, each of them is
associated with an atomic counter (initialized to 0 on MPI_Start). A Pready-
call to user-partition p is then handled by incrementing the counter associated
with the corresponding internal partition p’. If the counter reaches m (i.e. the
number of user-partitions corresponding to p’), the internal partition can be
marked ready for transfer by calling Pready on the internal request.

Using such a mapping from user-partitions to internal ones, an MPI-implemen-
tation can select the optimal number and size of the transferred messages,
independent of the number of partitions that the application reports through
MPI Psend init.

user partitions | p[0] | p[1] | p[2] | p[3] | pl4] | P[5 | pl6] | pl7] | pI8] | pl9] | p[10] | p[11] | p[12] | p[13] | p[14] | p[15]
o \/ \/ \/ \/ \/ \/ \/ \/
transfer partitions P[0] P1] P[2] P[3] P[4] P[5] P6] P[7]

atomic counters clo] c[1] c[2] c[3] cl4] c[5] cl6] c[7]

Fig. 2: General approach of the aggregation scheme with a 2 — 1-mapping

Table 1: Operations used on the send side for the different transfer mechanisms.
Calls made for individual partitions p are marked with (p).

Mechanism Initialization Partition ready |Completion |Freeing

Send - MPI_Send - -

Persistent Send|MPI_Send init(p)|MPI_Start(p) |MPI_Waitall| MPl Request free(p)
Isend - MPI_Isend(p) |MPI_Waitall|[MPI _Request free(p)
Psend MPI Psend init |[MPI Pready(p)|MPl Wait |MPI Request free

Benchmarking the State of MPI Partitioned Communication in Open MPI 5

Table 2: Operations used on the receiver side. Calls made for individual parti-
tions p are marked with (p).

Mechanism Initialization Receive partition|Completion |Freeing

Send - MPI_Recv - -

Persistent Send|MPI_Recv_init(p)|MPI _Start(p) |[MPI_Waitall|[MPI_Request free(p)
Isend - MPI_lIrecv(p) |[MPIl_Waitall| MPI_Request free(p)
Psend MPI_Precv_init MPI_Wait |MPI_Request free

general initialization of send/recv method if needed

for i in O...num_iterations:
MPI_Barrier(...) # basic synchronization for time meassurement
start_time[i] = MPI_Wtime()

MPI_Start() # if needed (i.e. for Psend)

loop over partitions which is split up over multiple threads
for p in O...partitione_count in some order:
send/recv partition p

MPI_Wait(request) # completion if required by the send/recv method

end_time[i] = MPI_Wtime()
cleanup

bandwidth = buffer_size / mean(end_time - start_time)

Listing 1: Benchmark structure and time measurement

4 Benchmarking Partitioned Communication

4.1 Benchmark description

To compare the performance of partitioned communication implementations we
developed a benchmark that compares it to various alternative communication
patterns and provides several different schemes to mark individual partitions as
ready for transfer.

The overall structure of the benchmark is presented in Listing 1. It consists
of a main loop executing the communication pattern with one of the transfer
mechanisms from Table 1 and 2 for multiple iterations. For the time measure-
ments functionality from MPI is used. The final bandwidth is computed from
the mean time of the iterations. The communication pattern executed in each
iteration iterates over a buffer, which is split up into a count of partitions. The
individual partitions are marked ready for transfer within this loop based on
different schemes.

6 A. Schneewind and C. Niethammer

4.2 Loop schemes for marking partitions:

As the performance of possible optimizations can depend on the order in which
partitions are marked ready, we evaluate a few schemes:

— left-to-right: Partitions are marked as ready in sequence starting from par-
tition number zero. If multiple threads are used the order of partitions pro-
cessed by each thread is in sequence starting from the thread’s lowest as-
signed partition number.

— randomized: Partitions are marked ready in random order.

— neighbourhood exchange pattern: This scheme mimics a typical neigh-
bour communication with halos in two dimensions. Here, each partition cor-
responds to a cell in a rectangular grid.

5 Evaluation

Benchmarks were run on the HAWK supercomputer system at HLRS, which
consists of dual-socket nodes with AMD EPYC 7742 CPUs with 64 cores each
and 256 GB of RAM. For the inter-node connection, HAWK uses Infiniband
HDR with 200 GBit/s to implement a 9D-hypercube. The benchmarks were ex-
ecuted with two MPI processes distributed over two nodes. As MPI version
Open MPI v5.0.3 with UCX version 1.14.0 was used. Everything was compiled
using GCC version 13.1.0.

5.1 Comparison between send mechanisms

Figure 3 compares the effective bandwidth depending on partition size for block-
ing send, persistent send, and Psend, when marking partitions using a single
thread.

Transferring the buffer as a single partition allows for bandwidths close to the
theoretic bandwidth of 25 GB/s. For the blocking send, the bandwidth quickly
drops when splitting the transfer into more messages. Persistent and partitioned
sends, however, keep the high bandwidth when reducing the partition size all
the way down to 2'6. When further reducing the partition size, the bandwidth
drops to the level of blocking sends. Between persistent and partitioned send,
differences are negligible, which can be explained by Psend being implemented
using persistent send-requests internally.

For multiple threads marking partitions as ready, larger differences between
persistent and partitioned send can be observed, as shown in Figure 4: Here, the
bandwidths are shown for thread counts between 1 and 16. For persistent send,
used with larger partitions, the bandwidth already drops by approximately 25%
when increasing the thread count from 1 to 16. This can possibly be explained
by some locking being present in the code-path of MPI Start(). With higher
thread numbers, one can expect further reductions in performance.

bandwidth [B/s]

Benchmarking the State of MPI Partitioned Communication in Open MPI

1e10 Blocking Send vs persistent Send vs Psend

2.5
—— Psend
—a&— SendPersistent
—— Send
2.0
w
& 1.5
i=
e}
=
=
=]
S 1.0
=]
0.5
0.0 T T T T T T
29 211 213 215 21? 219 221 223
partition size [B]
Fig. 3: Blocking, persistent, and partitioned for pure Open MPI
25 lel0 MPI_Psend 25 lel0 Persistent MPI_Send
—=— Psend, 1 threads
—4— Psend, 2 threads
—»— Psend, 4 threads.
2.0 —« Psend. 8 threads 2.0 4
—¥— Psend, 16 threads
154 % 154
1.0 4 £ 104
—m— SendPersistent, 1 threads
—#— SendPersistent, 2 threads
0.5 0.5
—»— SendPersistent, 4 threads
—e— SendPersistent, 8 threads
—¥— SendPersistent, 16 threads
o0 29 211 213 215 217 219 221 223 o0 29 211 213 215 217 219 221 223

partition size [B] partition size [B]

Fig.4: Comparison of persistent to partitioned in multi-threaded setting

7

8 A. Schneewind and C. Niethammer

5.2 Performance depending on arrival patterns

Marking partitions in different orders does not influence the effective bandwidth,
as seen in Figure 5. This can be expected, as OpenMPI performs one transfer
per partition, regardless of the pattern in which they are marked ready.

lel0 MPI_Psend
2.5
2.0 -
L 15
S
b=
=
k=
S 1.0
0
0.5 1 .
—&— Psend, linear
Psend, random
—»— Psend, neighborhood exchange
0.0 T T T T T T

29 211 213 215 21? 219 221 223
partition size [B]

Fig.5: Psend with different arrival patterns

5.3 Partition aggregation

In case of the setup used here, the drop in effective bandwidth when using
partitions with a size smaller than 64kB can be prevented by mapping more
fine-grained partitionings to internal partitions with a size of 64 kB. For other
systems, the optimal size of partitions might differ and would need to be config-
ured accordingly.

The effective bandwidth of this custom implementation of Psend is shown in
Figure 6, compared to the current implementation of Open MPI. For the left-
to-right- and neighbourhood exchange-patterns (Fig. 6a), the high bandwidth of
larger partitions is kept, regardless of the application-provided partitioning. For
the randomized pattern (Fig. 6b), however, a drop in bandwidth can be seen for
larger partitions. This can be explained by the fact that for random marking of

Benchmarking the State of MPI Partitioned Communication in Open MPI 9

user-partitions, each internal partition can be expected to become ready within
the last few insertions. Therefore, the first transfer can be expected to happen
far later than for linear insertion patterns.

Note that the benchmark does not simulate computations on the send side
and as a result, the Pready-calls happen in close succession. For actual appli-
cations, the calls can occur further distributed in time, possibly increasing the
influence of the sending pattern on the effective bandwidth. For this reason, it
might be necessary to implement more sophisticated methods of message aggre-
gation in such cases.

55 Lel0 MPI_Psend with/without aggregation 55110 MPI_Psend with/without aggregation

g ——t—p—t

bandwidth [8/s]
bandwidth [8/s]

—=— Psend, linear
PsendCustom, linear

—— Psend, neighborhood exchange —=— Psend, random

—e— PsendCustom, neighborhood exchange PsendCustom, random

» 11 13 o1 o7 s 21 23 » 11 13 o1 o7 s 21 23
partition size [B] partition size [B]

(a) left-to-right pattern (b) random pattern

Fig. 6: Bandwidths for the custom Psend-implementation with different patterns
to mark partitions ready

6 Conclusion

In this paper, we evaluate and improve on the current state of the partitioned
communication interface in MPI implementations. Therefore we present a syn-
thetic benchmark that compares partitioned communication to alternative com-
munication patterns in a hybrid MPI+thread context using different schemes to
mark partitions as ready for transfer. Our findings show, that the implementation
in Open MPI already can achieve better performance with the new partitioned
interface compared to the alternative patterns. However, the implementation has
some issues with small partitions, i.e., large numbers of partitions. Therefore, we
present an optimization based on an aggregation scheme for the partitions. This
optimization shows clear benefits, especially for schemes where partitions are
marked ready in a sequential ordering.

10 A. Schneewind and C. Niethammer

7 Outlook

The benchmark that we developed for MPI partitioned communication allows us
to test quickly the performance of MPI implementations with different commu-
nication patterns. We plan to extend our performance tests to MPICH as well
as other MPT libraries and compare our findings with other recent studies [2].
Based on our prototype implementation for the aggregation of partitions, we
intend to come up with a native implementation in Open MPI.

Acknowledgments. This study was performed within the context of the 3xa project
that received funding from the Federal Ministry of Education and Research, grant
number 16ME0654.

References

1. Dosanjh, M.G., Worley, A., Schafer, D., Soundararajan, P., Ghafoor, S., Skjellum,
A., Bangalore, P.V., Grant, R.E.: Implementation and evaluation of MPI 4.0 parti-
tioned communication libraries. Parallel Computing 108 (2021)

2. Gillis, T., Raffenetti, K., Zhou, H., Guo, Y., Thakur, R.: Quantifying the perfor-
mance benefits of partitioned communication in MPI. In: Proceedings of the 52nd
International Conference on Parallel Processing. ICPP 2023, ACM (Aug 2023)

3. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Ver-
sion 4.1 (Nov 2023), https://www.mpi-forum.org/docs/mpi-4.1 /mpi41-report.pdf

4. Open MPI, https://www.open-mpi.org/

5. TOP500 List (June 2024). https://top500.org/lists/top500,/2024/06/, accessed:
2024-08-02

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.open-mpi.org/
https://top500.org/lists/top500/2024/06/

	Benchmarking the State of MPI Partitioned Communication in Open MPI

