
(Ideas for a)
Design of a New
Synchronisation
Scheme for MPI RMA
Joseph Schuchart, Institute for Advanced Computational Science, Stony Brook University

Joseph.Schuchart@stonybrook.edu

Thomas Gillis, NVIDIA (frmly Argonne National Lab)

EuroMPI/Australia, September 26, 2024, Perth, Australia

1

2

• Work in progress

• Started in 2023

• Disrupted by changes in employment and funding

• Prelim discussions in the RMA WG

Disclaimer

Joseph
UTK → SBU

Thomas
ANL → Nvidia

3

20 Years of MPI RMA PSCW

Fence

Passive
Target

MPI 1
May 5, 1994

MPI 2
Nov 15, 2003

MPI 3.0
Sept 21, 2012

MPI 3.1
June 4, 2015

MPI 4.1
Nov 2, 2023

Fence
PSCW
Locks

Lockall
Flush
Sync
Allocated Win
Shared Win
Dynamic Win

Flexible
Shared Memory

Atomic operation
splitting

MPI 4.0
June 9, 2021

4

RMA Terms

FenceFence

FenceFence

Put

Synchronization

OriginTarget

Operation

Complete
at origin

Complete
at target

Access & Exposure
Epoch

5

Three synchronization methods in MPI RMA

• Confusing rules

• Mutually exclusive usage

Data movement is easy, synchronization is hard

Synchronization has process-scope

Motivation

PSCW

Fence

Passive
Target

What would a clean-slate
approach look like?

6

Collective synchronization

Upon return on Process A:

• Operations for which Process A is the target will have
completed at Process A (“remote completion”)

• Operations for which Process A is the origin will have
completed at Process A (“local completion)”

Fast on some networks

Review: MPI_Fence
FenceFence

FenceFence

PutPutGet PutPutPut

Process A Process B

7

Post: open exposure epoch
Start: open access epoch
Complete: close access epoch
Wait: close exposure epoch

P2P synchronization in flexible peer groups

One signal per peer

Review: Generalized Active Target (PSCW)

Post

Post

Complete

Complete

PutPutGet

PutPutPut

Synchronizes
with Start

Start

Process A

Wait

Wait

Process B

8

Mutually exclusive access epochs

• Lock: waits for other access epochs to complete

• Unlock: ensures completion at target & origin

No exposure epochs

P2P synchronization

Reader/Writer synchronization through shared & exclusive locks

Review: Passive Target Synchronization

Lock

Unlock

PutPutGet

Process A Process B

Unlock

Lock

Put

9

Mutually exclusive access epochs

• Lock: waits for other access epochs to complete

• Unlock: ensures completion at target & origin

No exposure epochs

P2P synchronization

Reader/Writer synchronization through shared & exclusive locks

“Bulletin-style” communication without synchronization
Closest to shared memory & OpenSHMEM

Review: Passive Target Synchronization

Lock
[shared]

PutPutGet

Process A Process B

Lock
[shared]

PutPutPut

Unlock Unlock

Flush Flush

Get

10

Let’s
simplify
RMA!

How about
we

deprecate
PSCW?

Yeah, no
one is

using that
anyway!

Hey, I’m
using PSCW
and it works
great for my

app!RMA
WG

:/

:/

11

Flexible Bidirectional Synchronization

Why PSCW?
Post

Post

Complete

Complete

PutPutPut

PutPutPut

Synchronizes
with Start

Start

Process A

Wait

Wait

Process B

I have
consumed

previous data.

Tell me
when you’re

ready!

Got it! Thanks for
the data!

Done,
here you

go :)

12

Multiple threads may initiate RMA operations

Only one thread must synchronize

Threads must join before synchronizing the window

Or

Application must roll their own synchronization scheme

But: Multi-Threading Challenges

13

14

Bi-directional synchronization mechanism

Combine exposure and access epochs

Acquisition: wait for prior use to complete

• Memory availability

Release: completes operations and notifies target

• Data avilability

PSCW: one signal for all peers

Enter: Signals
Release

Release

PutPutGet

Synchronizes
with

Acquire

Process A

Acquire

Process B

15

Signals should be identifiable

Max number of signals known up front (e.g., number of threads)

Number of signals specified during window creation

Global naming

From One To Many Signals

16

Map sets of operations to Signals

Completion of a batch releases the signal at the target

Arbitrary number of batches

Batches without signals: thread-scope passive target

Allows aggregation of small operations

Windows are always exposed

Aggregating Operations: Batches

batch-close

PutPutbatch-get

batch-open

Process A Process B

Operations complete

18

Batches may synchronize with a signal

Simplest case: P2P synchronization

Batches & Signals

batch-close(b)

PutPutbatch-put(b)

b=
batch-open(x, B)

Process A Process B

signal-post(x, A)

signal-wait(x)

Synchronizes
with

19

Batches may synchronize with a signal

Signal release may depend on multiple peers

Batches, Signal & Groups

batch-close(b)

PutPutbatch-put(b)

b=
batch-open(x, B)

Process A Process B

signal-group-
post(x, {A, C})

signal-wait(x)

Process C

batch-close(b)

PutPutbatch-get(b)

b=
batch-open(x, B)

20

Batches may synchronize with a signal

Signal release may depend on multiple peers

Batches may release signals on multiple peers

Single Signal replaces PSCW

Batches, Signal & Groups

batch-close(b)

PutPutbatch-put(b)

b=
batch-open(x, B)

Process A Process B

signal-group-
post(x, {A, C})

signal-wait(x)

Process C

batch-close(b)

PutPutbatch-get(b)

b=
batch-open(x, B)

signal-post(x,B) b=
batch-open(x,

{A, C})

signal-post(x,B)

batch-close(b)

PutPutbatch-put(b)

signal-wait(x)signal-wait(x)

21

Batches may synchronize with a signal

Signal release may depend on multiple peers

Batches may release signals on multiple peers

Single Signal replaces PSCW

Multiple signals & batches provide thread-scope
synchronization

Batches, Signal & Groups Process A Process B

signal-post(x,B)

b1=
batch-open(y, A)

batch-close(b1)

PutPutbatch-put(b1)

signal-wait(y)

b2=
batch-open(x, A)

batch-close(b2)

PutPutbatch-put(b2)

signal-post(y,B)

signal-wait(x)

22

Acquire: batch-open & signal-wait acquire the signal

Release: signal-post & batch-close release the signal

Relaxed: put/get & load/store operations have no ordering
guarantee

Memory Semantics

batch-close(b)

PutPutbatch-put(b)

b=
batch-open(x, B)

Process A Process B

signal-post(x, A)

signal-wait(x)

Release
All put/get & load/store

operations complete
before the release.

Acquire
Put/get & load/store

operations must occur
after the acquire

Relaxed
Unordered with respect

to other relaxed
operations

load
store

23

Batch-close guarantees local completion

• Allows reuse of buffers

• Potentially avoids network latency

• Signal acquisition is ordered with signal release so
there is no race between Process B and Process A in
memory of Process C

Semantics: Local completion

batch-close(b)

PutPut
batch-put(b)

b=
batch-open(x, B)

Process A Process B

signal-group-post(x,
{A, C})

signal-wait(x)

Process C

batch-close(b)

PutPut
batch-get(b)

b=
batch-open(x, B)

signal-post(x,B)
b=

batch-open(x, {A, C})

signal-post(x,B)

batch-close(b)

PutPut
batch-put(b)

signal-wait(x)signal-wait(x)

batch_get

batch-open(x, C)
signal-post(x,B)

Will access data
written by B

24

All-to-all communication pattern

Signal-fence combines signal release and acquisition in a
collective operation

• group(comm) ⊆ group(window)

Signal-fence and batch-close operations nonblocking to
avoid deadlocks

• Potentially nonblocking signal-iwait

Only one epoch per communicator at a time

• Multiple epochs on different communicators

Coexist with P2P & group signals

Collective Synchronization

batch-close(b)

PutPut
batch-put(b)

b=
signal-fence(x,

comm)

Process A Process B

b =
signal-fence(x,

comm)

signal-wait(x)

Process C

batch-close(b)

PutPut
batch-get(b)

b=
signal-fence(x,

comm)

batch-close(b)

PutPut
batch-put(b)

signal-wait(x)signal-wait(x)

26

TBD

Implementation & Evaluation

27

Also Under Consideration

Persistent RMA

Device
support

Dynamic Windows

Atomic operations

28

Data movement is easy, synchronization is hard

Signals & Batches provide flexible synchronization mechanism

• Combine all three existing models into one

Separation of concerns

• Windows holds memory

• Batches & Signals provide synchronization

Summary

PSCW

Fence

Passive
Target

Batches &
Signals

29

Feedback welcome ☺

Joseph.Schuchart@stonybrook.edu

https://github.com/mpiwg-rma/rma-issues/

30

This research was supported partly by NSF awards #1931347 and #1931384, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. We gratefully acknowledge the
provision of computational resources by the Oak Ridge National Laboratory (ORNL) and the High-
Performance Computing Center (HLRS) at the University of Stuttgart, Germany.

Acknowledgements

	Slide 1: (Ideas for a) Design of a New Synchronisation Scheme for MPI RMA
	Slide 2: Disclaimer
	Slide 3: 20 Years of MPI RMA
	Slide 4: RMA Terms
	Slide 5: Motivation
	Slide 6: Review: MPI_Fence
	Slide 7: Review: Generalized Active Target (PSCW)
	Slide 8: Review: Passive Target Synchronization
	Slide 9: Review: Passive Target Synchronization
	Slide 10
	Slide 11: Why PSCW?
	Slide 12: But: Multi-Threading Challenges
	Slide 13
	Slide 14: Enter: Signals
	Slide 15: From One To Many Signals
	Slide 16: Aggregating Operations: Batches
	Slide 18: Batches & Signals
	Slide 19: Batches, Signal & Groups
	Slide 20: Batches, Signal & Groups
	Slide 21: Batches, Signal & Groups
	Slide 22: Memory Semantics
	Slide 23: Semantics: Local completion
	Slide 24: Collective Synchronization
	Slide 26: Implementation & Evaluation
	Slide 27: Also Under Consideration
	Slide 28: Summary
	Slide 29
	Slide 30: Acknowledgements

