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Quantum Computing

Computation on information encoded into the basis states and amplitudes of a quantum state.
The fundamental unit of information: |qubit> —— CO ‘ O> _I— Cl ‘ ]_>
A guantum processor with n qubits can store 2™ bits of information in superposition.

Quantum algorithm development aims to manipulate entanglement, interference and superposition
to solve difficult problems.
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Combinatorial Optimisation

Solves problems in chemistry, finance, logics, logistics, bioinformatics...
Solutions represented as vectors of n combinatorial variables: S = (8(), « ooy Sn—l)
Each variable can take one of m values: XY — {330’ e wm—l}

Each solution has a cost: C S — R

Goal: Identify solutions at, or close to, the global minimum:
Sopt = {s | C(s) € min{C(s) | s 5}}

Classically challenging:

* Lack of exploitable local structure

« Search space grows exponentially |S| = m™
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Quantum Variational Algorithms for Optimisation

Ansatz State
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Quantum Variational Algorithms (QVAs) prepare an
ansatz state in which low-cost (or high-quality) solutions
are amplified.
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Quantum Variational Algorithms for Optimisation

Initial State

* Solution encoding
* Starting distribution

Ansatz State
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Quantum Variational Algorithms for Optimisation

Initial State
Solution encoding
Starting distribution

Ansatz State
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Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)
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Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

Graph Structure * Solution encoding
Walk time (t;) ¢ Starting distribution

Ansatz State
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Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)
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Quantum Variational Algorithms for Optimisation

Initial State
* Solution encoding - —

Mixing Unitary

Graph Structure
Walk time (t;)

Starting distribution

Ansatz State
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Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)

Ansatz Depth (p)

Number of iterations
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Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

Graph Structure
Walk time (t;)
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Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

* Graph Structure
*  Walk time (t;)

* Solution encoding
* Starting distribution

Ansatz State
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Phase-Shift Unitary

* Cost function encoding
* Parameterisation (y;)

Ansatz Depth (p)

*  Number of iterations

Variational Parameters
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Challenges in QVA Design

Complex Quantum Dynamics Current Quantum Processors Reliance on Classical Simulation
* Difficult to derive analytical proofs * Experimental devices * Computationally intensive
S EEMYERYENES At EEElEiE? * Size and stability limitations * Requires specialist skillsets

* Not suitable for validation and

benchmarking
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Circuit-Based Simulation
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Hamiltonian-Based Simulation
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QuOp_MPI

quop_mpi.algorithm.combinatorial gaoa, serial

* Quantum Optimisation with MPI quop_mpi . toolkit I, z

networkx nx

Graph = nx.circular_ladder_graph(:)
_ _ _ vertices = len(Graph.nodes)
* Message Passing Interface: parallel computing with networked — Jsystem_size = = #x vertices

G = nx.to_scipy_sparse_array(Graph)

compute nodes (i.e. supercomputers)

maxcut_qualities(G):

i range(G.shape[8]):
. j range(G.shape[8]):
* A modular Python interface to MPlparallel backends G[ili;‘:] 1=
C += * (I(vertices) - (Z(i, vertices) @ Z(j, vertices)))
-C.diagonal()

. . = qaoal(system_size
* Study established QVAs and develop novel algorithms ,Seﬂ_qu;éﬂﬁfseriih ‘ . [maxcut_qualities. GI})
.set_depth(2)
.executel()
.print_result()
.save( ]

* High-precision state-vector simulation of the fundamental
unitary dynamics
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Software Architecture

Parameter Mixing
Initialisation Structure

Phase-Shift
C

(Interface Class)

I

MPI Parallelised

Simulation Backends

Parameter .
imisati QuOp Functions
Initial State Optimisation P

|¢O> m * Python Language

User-definable
Flexible and Dynamic

Called in MPI-parallel

Ansatz

* Parameter Optimisation

* Coordination of Unitary
Instances

Simulation

Result
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QuOp_Wavefront

e QUOP_Wavefront brings GPU acceleration to QuOp_MPI.

e Uses HIP in Fortran and C++.

e Targets the latest generation of Cray systems equipped with AMD GPUs.

e Goal: Efficient and scalable GPU acceleration on distributed-memory systems.
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Communicator Structure

Phase-Shift Initial Mixing
Angles Parameters Structure
0 0 A

Initial State * Initial setup on device.
|Yo)  Compute intensive steps on device.
* GPU to GPU MPI buffer transfers.
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Communicator Structure

ANSATZ_COMM

NODE_COMM_0 NODE_COMM_1

\hiplpcMemHandle

DEVICE_COMM_0 DEVICE_COMM _1 o hipMemcpy

DEVICE_COMM
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FFT-Based Simulation in High-Dimensions

In unconstrained combinatorial optimization, the solution space is described by:

SEXT=XXXXx--xX

J/

n times
A row-major ordering of the possible combinations.

A natural choice of mixing unitary is a tensor product of complete graphs:
H=Ky® - ® K,,_1

H is the adjacency matrix of a Hamming graph on m-tuples, solutions are connected if they differ in exactly one of
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FFT-Based Simulation in High-Dimensions

The resulting mixing unitary is efficiently computed as a multidimensional FFT:

—1

w(t) = @ (F;'e “MF,) o)

j=0

=

We are interested in studying problems where classical optimisation is hard, the potential for a quantum advantage

Increases with n.

Available FFT libraries with MPI and HIP support natively support FFTs up n = 3.
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FFT-Based Simulation in High-Dimensions

* To address this, we developed SHAFFT [Scalable High-dimensional Accelerated FFT), a C++ library with a Fortran
interface.

* It implements a method developed by Dalcin et al. (2018]
* The state vector is distributed using a balanced, block-contiguous slab decomposition.

* (Global redistributions are performed using MPI_AlltoAllw with subarray datatypes, avoiding the need for local
transpositions.

* Local transforms over contiguous dimensions are executed using hipFFT.
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FFT-Based Simulation in High-Dimensions

Strong Scaling Subarray Size Weak Scaling
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16 MPI-processes and 8 GPUs per node.

 Two distributed coordinates, three batches of local FFTs and two redistributions.

e Strong scaling: n=3, size = 210 x 210 x 210,

 Weak scaling: n=6, first 6 — log, (Nodes) dimensions size 2°, the remaining size 2°.

* Node Configuration: AMD EPYC 7A53 64-Core GPU, eight AMD MI250X GPUs and 256 GB RAM.
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Future Work

* Reordering of the global communicator to pair processes with GPUs in the same NUMA region
* Simulation of mixing unitaries with sparse unitaries

» Soon: Standalone release of SHAFFT
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