‘F Pawsey

—
WAL SRESEA SN A

Quantum Algorithm Design with QuOp_ MPI

Edric Matwiejew

The Pawsey Supercomputing Research Centre is an unincorporated joint venture between and proudly funded by

Core Members Founding
Associate

Member

e

[
) N N Murdoch [F57=) THE UNIVERSITY OF ~ CRIS '
% Curtin University w University E’ %%%%ﬁﬁ ol Researeh

Quantum Computing

Computation on information encoded into the basis states and amplitudes of a quantum state.
The fundamental unit of information: |qubit> —— CO ‘ O> _I— Cl ‘]_>
A guantum processor with n qubits can store 2™ bits of information in superposition.

Quantum algorithm development aims to manipulate entanglement, interference and superposition
to solve difficult problems.

Ouantum Algorithm Design with QuOp MPI ‘

Combinatorial Optimisation

Solves problems in chemistry, finance, logics, logistics, bioinformatics...
Solutions represented as vectors of n combinatorial variables: S = (8(), « ooy Sn—l)
Each variable can take one of m values: XY — {330’ e wm—l}

Each solution has a cost: C S — R

Goal: Identify solutions at, or close to, the global minimum:
Sopt = {s | C(s) € min{C(s) | s 5}}

Classically challenging:

* Lack of exploitable local structure

« Search space grows exponentially |S| = m™

Ouantum Algorithm Design with QuOp MPI ‘

Quantum Variational Algorithms for Optimisation

Ansatz State

0) =

A

w(ti)Uo(v:)4bo)

—

~
|
el

Quantum Variational Algorithms (QVAs) prepare an
ansatz state in which low-cost (or high-quality) solutions
are amplified.

Ouantum Algorithm Design with QuOp MPI ‘

Quantum Variational Algorithms for Optimisation

Initial State

* Solution encoding
* Starting distribution

Ansatz State

Ouantum Algorithm Design with QuOp MPI .

Quantum Variational Algorithms for Optimisation

Initial State
Solution encoding
Starting distribution

Ansatz State

0) =

Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)

Ouantum Algorithm Design with QuOp MPI .

Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

Graph Structure * Solution encoding
Walk time (t;) ¢ Starting distribution

Ansatz State

0) = w(ti)Uq(vi)[tho)

—

~
|
el

Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)

Ouantum Algorithm Design with QuOp MPI .

Quantum Variational Algorithms for Optimisation

Initial State
* Solution encoding - —

Mixing Unitary

Graph Structure
Walk time (t;)

Starting distribution

Ansatz State

0) = w(ti)Uq(vi)[tho)

—

~
|
el

Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)

Ansatz Depth (p)

Number of iterations

Ouantum Algorithm Design with QuOp MPI .

Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

Graph Structure
Walk time (t;)

Solution encoding
Starting distribution

Ansatz State

0) = w(ti)Uq(vi)[tho)

—

~
|
el

Phase-Shift Unitary

Cost function encoding
Parameterisation (y;)

Ansatz Depth (p)

Number of iterations

Variational Parameters

0 — ((’70, tO)) (’71, t]_), c ooy ('YP_]_, tp_]_)) Quantum Algorithm Design with QuOp_MPI ‘

Quantum Variational Algorithms for Optimisation

Mixing Unitary Initial State

* Graph Structure
* Walk time (t;)

* Solution encoding
* Starting distribution

Ansatz State

0) = w(ti)Uq(vi)[tho)

—

)
I
et

Phase-Shift Unitary

* Cost function encoding
* Parameterisation (y;)

Ansatz Depth (p)

* Number of iterations

Variational Parameters

0 = ((707 t0)7 (717 t1)7 SO (’YP—D tp—l))

: Processor

min(0|Q|6)
L Variational Parameters @ :

..
" .,

Classical “.

Objective Function
Processor @

B .
--

Hybrid Loop

Ouantum Algorithm Design with QuOp MPI ‘

Challenges in QVA Design

Complex Quantum Dynamics Current Quantum Processors Reliance on Classical Simulation
* Difficult to derive analytical proofs * Experimental devices * Computationally intensive
S EEMYERYENES At EEElEiE? * Size and stability limitations * Requires specialist skillsets

* Not suitable for validation and

benchmarking

Ouantum Algorithm Design with QuOp MPI

Circuit-Based Simulation

Vo)

CNOT -

0

Quantum Algorithm Design with Qulp_MPI ‘

Hamiltonian-Based Simulation

@ 0 0 i Co | e—i7q060
" 0 q1 ' o0 0 Cl e_iTQIcl
Ug(Y)|¥) =exp | —iv | . , S

L 0 0 qN—1 CN—-1| _e_l'}"?N—lcN_l_

Quantum Algorithm Design with QuOp_MPI ‘

QuOp_MPI

quop_mpi.algorithm.combinatorial gaoa, serial

* Quantum Optimisation with MPI quop_mpi . toolkit I, z

networkx nx

Graph = nx.circular_ladder_graph(:)
_ _ _ vertices = len(Graph.nodes)
* Message Passing Interface: parallel computing with networked — Jsystem_size = = #x vertices

G = nx.to_scipy_sparse_array(Graph)

compute nodes (i.e. supercomputers)

maxcut_qualities(G):

i range(G.shape[8]):
. j range(G.shape[8]):
* A modular Python interface to MPlparallel backends G[ili;‘:] 1=
C += * (I(vertices) - (Z(i, vertices) @ Z(j, vertices)))
-C.diagonal()

. . = qaoal(system_size
* Study established QVAs and develop novel algorithms ,Seﬂ_qu;éﬂﬁfseriih ‘ . [maxcut_qualities. GI})
.set_depth(2)
.executel()
.print_result()
.save(]

* High-precision state-vector simulation of the fundamental
unitary dynamics

Quantum Algorithm Design with Qulp_MPI

Software Architecture

Parameter Mixing
Initialisation Structure

Phase-Shift
C

(Interface Class)

I

MPI Parallelised

Simulation Backends

Parameter .
imisati QuOp Functions
Initial State Optimisation P

|¢O> m * Python Language

User-definable
Flexible and Dynamic

Called in MPI-parallel

Ansatz

* Parameter Optimisation

* Coordination of Unitary
Instances

Simulation

Result
10)

Quantum Algorithm Design with Qulp_MPI ‘

W

QuOp_Wavefront

e QUOP_Wavefront brings GPU acceleration to QuOp_MPI.

e Uses HIP in Fortran and C++.

e Targets the latest generation of Cray systems equipped with AMD GPUs.

e Goal: Efficient and scalable GPU acceleration on distributed-memory systems.

Quantum Algorithm Design with Qulp_MPI

Communicator Structure

Phase-Shift Initial Mixing
Angles Parameters Structure
0 0 A

Initial State * Initial setup on device.
|Yo) Compute intensive steps on device.
* GPU to GPU MPI buffer transfers.

Hoit Partition M-1 Host Partition M-1 Host Partition M-1 Host Partition M
Ol el Al hI)O) 0; 0; A; |¢O> 0; 0; Al |¢O> 0; HIAI |II)0>

_______ L SENNSEN SN S S—

Host (M processes)

Device Partition 1 Device Partition L j i
evice Partition EVIce Fartition Device (L Devices)

a, 9,2;“/}0) a; 912; |¢0)

Quantum Algorithm Design with QuOp_MPI

Communicator Structure

ANSATZ_COMM

NODE_COMM_0 NODE_COMM_1

\hiplpcMemHandle

DEVICE_COMM_0 DEVICE_COMM _1 o hipMemcpy

DEVICE_COMM

Quantum Algorithm Design with Qulp_MPI .

FFT-Based Simulation in High-Dimensions

In unconstrained combinatorial optimization, the solution space is described by:

SEXT=XXXXx--xX

J/

n times
A row-major ordering of the possible combinations.

A natural choice of mixing unitary is a tensor product of complete graphs:
H=Ky® - ® K,,_1

H is the adjacency matrix of a Hamming graph on m-tuples, solutions are connected if they differ in exactly one of

Quantum Algorithm Design with Qulp_MPI ‘

their possible values.

FFT-Based Simulation in High-Dimensions

The resulting mixing unitary is efficiently computed as a multidimensional FFT:

—1

w(t) = @ (F;'e “MF,) o)

j=0

=

We are interested in studying problems where classical optimisation is hard, the potential for a quantum advantage

Increases with n.

Available FFT libraries with MPI and HIP support natively support FFTs up n = 3.

Quantum Algorithm Design with Qulp_MPI ‘

FFT-Based Simulation in High-Dimensions

* To address this, we developed SHAFFT [Scalable High-dimensional Accelerated FFT), a C++ library with a Fortran
interface.

* It implements a method developed by Dalcin et al. (2018]
* The state vector is distributed using a balanced, block-contiguous slab decomposition.

* (Global redistributions are performed using MPI_AlltoAllw with subarray datatypes, avoiding the need for local
transpositions.

* Local transforms over contiguous dimensions are executed using hipFFT.

Quantum Algorithm Design with Qulp_MPI ‘

FFT-Based Simulation in High-Dimensions

Strong Scaling Subarray Size Weak Scaling

m
©
-
@]
o
Q
wn
Q
-
=
=

16 MPI-processes and 8 GPUs per node.

 Two distributed coordinates, three batches of local FFTs and two redistributions.

e Strong scaling: n=3, size = 210 x 210 x 210,

 Weak scaling: n=6, first 6 — log, (Nodes) dimensions size 2°, the remaining size 2°.

* Node Configuration: AMD EPYC 7A53 64-Core GPU, eight AMD MI250X GPUs and 256 GB RAM.

Quantum Algorithm Design with Qulp_MPI ‘

Future Work

* Reordering of the global communicator to pair processes with GPUs in the same NUMA region
* Simulation of mixing unitaries with sparse unitaries

» Soon: Standalone release of SHAFFT

Quantum Algorithm Design with Qulp_MPI ‘

	Slide 1: Quantum Algorithm Design with QuOp_MPI
	Slide 2: Quantum Computing
	Slide 3: Combinatorial Optimisation
	Slide 4: Quantum Variational Algorithms for Optimisation
	Slide 5: Quantum Variational Algorithms for Optimisation
	Slide 6: Quantum Variational Algorithms for Optimisation
	Slide 7: Quantum Variational Algorithms for Optimisation
	Slide 8: Quantum Variational Algorithms for Optimisation
	Slide 9: Quantum Variational Algorithms for Optimisation
	Slide 10: Quantum Variational Algorithms for Optimisation
	Slide 11: Challenges in QVA Design
	Slide 12: Circuit-Based Simulation
	Slide 13: Hamiltonian-Based Simulation
	Slide 14: QuOp_MPI
	Slide 15: Software Architecture
	Slide 16: QuOp_Wavefront
	Slide 17: Communicator Structure
	Slide 18: Communicator Structure
	Slide 19: FFT-Based Simulation in High-Dimensions
	Slide 20: FFT-Based Simulation in High-Dimensions
	Slide 21: FFT-Based Simulation in High-Dimensions
	Slide 22: FFT-Based Simulation in High-Dimensions
	Slide 23: Future Work

