
Stream Support
in MPI without
the Churn

Joseph Schuchart, Institute for Advanced Computational Science, Stony Brook University

Joseph.Schuchart@stonybrook.edu

Edgar Gabriel, AMD

1

2

• Accelerators provide separate memory space and execution space

• Host controls device execution space through queues/streams

• Data produced by device becomes eventually available
for MPI to consume

• Data received by MPI will be consumed by device kernels

• Memory spaces exposed through new info keys

Motivation

Host Memory Space Device Memory Space

Host Execution Space
Device Execution

Space

MPI is blissfully unaware of
execution spaces so full
synchronization is required
before calling MPI.

Queues

3

MPI exclusively interacts with the host execution space

Blocking operations block the calling thread

Nonblocking (and persistent) operations are ordered with operations on the calling thread prior
to the starting MPI call

Applications must synchronize device streams producing data before calling MPI

Execution Spaces in MPI Today

Submit

Kernel

SendSendSync Submit

KernelDevice

Host

4

Correctness

• Exposes the device execution space

• Without proper synchronization MPI
sees inconsistent data

• Source of errors in applications

• Allow applications to order kernel
submission with MPI operations

Why We Want Stream-Awareness

Performance

• Synchronization of queues blocks the host-thread
and drains the device

• Integration increases potential for overlapping
kernel submission and execution

• Enables MPI to interact with streams, e.g., to
enqueue memory transfers or reduction
operations

Submit

Kernel

SendSendSync Submit

Kernel

Submit

Kernel

send

Submit

Kernel

Submit Submit

Device

Host

Network send

5

• Allow kernels to start parts of communication inside a kernel

• Enables fine-grain data transfers

• Still requires completion & start from the host

• Stream integration complements

Orthogonal: Device-Side Partitioned Operations

Submit

Kernel Pready

Submit

Kernel

Start StartWait

Pready

Wait

Device

Host

6

• Unlikely to offload all MPI functionality to devices

• Vendor libraries offload few operations supported by hardware, with constraints

• Significant burden on implementors

• Challenges: request management, stream-blocking, message matching, …

Alternative: Device Bindings for MPI

7

• Two similar proposals that wrap compute streams

• MPIX_Streams [1]

• MPIX_Queue [2]

• MPI Operations are enqueued into a stream

• Dedicated stream/queue object

• API duplication

• Relying on strong progress

MPI & Streams: Prior Work

[1] Zhou, H., Raffenetti, K., Guo, Y., Thakur, R.: MPIX stream: an explicit solution to hybrid MPI+X

programming. In: Proceedings of the 29th European MPI Users’ Group Meeting, EuroMPI/USA 2022

[2] Namashivayam, N., Kandalla, K., White, T., Radcliffe, N., Kaplan, L., Pagel, M.: Exploring GPU stream-

aware message passing using triggered operations. (2022)

8

1. Create a stream from a ninfo object with device stream hex-
encoded

2. Create a stream-comm from that stream

3. Explicit enqueue functions for blocking & nonblocking
operations & wait

Proposed for broader use with multi-threading through
multiplexing

Related: MPIX_Streams

MPIX_Info_set_hex()

MPIX_Stream_create()

MPIX_Stream_comm_create()

MPIX_Send_enqueue()

MPIX_Isend_enqueue()
MPIX_Wait_enqueue()

[1] Zhou, H., Raffenetti, K., Guo, Y., Thakur, R.: MPIX stream: an explicit solution to hybrid MPI+X

programming. In: Proceedings of the 29th European MPI Users’ Group Meeting, EuroMPI/USA 2022

9

1. Create an MPIX_Queue object

2. Enqueue operations into the queue

3. Start the queue

4. Wait for the queue to complete

Related: MPIX_Enqueue MPIX_Create_queue()

MPIX_Free_queue()

MPIX_Enqueue_send()

MPIX_Enqueue_start()

MPIX_Enqueue_wait()

[2] Namashivayam, N., Kandalla, K., White, T., Radcliffe, N., Kaplan, L., Pagel, M.: Exploring GPU stream-

aware message passing using triggered operations. (2022)

10

• Explore possible design of minimal extension for device stream integration in MPI

• Avoid significant expansion of MPI API

• Apply existing operation semantics to device streams

In This Work

Send
init

Send

Isend

Psend

Rsend

Irsend

Bsend

Ibsend

Normal Ready Buffered

Blocking

Non-
Blocking

Persistent

Partitioned

Enqueue
send

Queue ?

11

• Explore possible design of minimal extension for device stream integration in MPI

• Avoid significant expansion of MPI API

• Apply existing operation semantics to device streams

In This Work

Send
init

Isend

Psend

Rsend

Irsend

Bsend

Ibsend

Normal Ready Buffered

Blocking

Non-
Blocking

Persistent

Partitioned

Send

Stream
Support

12

Communication objects in MPI provide context for operations:

• Communicators provide process mapping & communication contexts

• Windows hold memory & contexts for RMA operations

• Files provide I/O context

Existing semantics cover all use-cases

• Blocking: FIFO start and completion

• Nonblocking: FIFO start, deferred completion

• Persistent & Partitioned: prior setup, FIFO start, deferred completion

Integrating With Existing Objects & Semantics

Send
init

Send

Isend

Psend

Rsend

Irsend

Bsend

Ibsend

Normal Ready Buffered

Blocking

Non-
Blocking

Persistent

Partitioned

13

1. Associate stream with communicator/file/window.

2. Enqueue operations (blocking, nonblocking, start).

3. Enqueue wait if needed, potentially after enqueueing more work.

4. Synchronize stream (eventually).

Our Proposal

14

Analoguous for Files and Windows

Stream passed via `void*` (e.g., hipStream_t*)

Stream type described as string (e.g., “hip”, “cuda”, “sycl”)

Flag returns 1 if MPI supports this type, 0 otherwise

Query stream (if previously associated)

Step 1: Associate Stream to Communicator
MPIX_Comm_set_stream(MPI_Comm comm,
 void* steam,
 const char* kind,
 MPI_Info info,
 int* flag);

MPIX_Comm_get_stream(MPI_Comm comm,
 void* stream,
 int* flag);

15

Blocking Operations

• Setup operation on stream (memory transfers / work descriptor / kernel launch)

• Operations will be pending on stream

• Prevent execution of subsequent operations

MPIX_Queue equivalence:

MPIX_Enqueue_send → MPIX_Enqueue_start → MPIX_Enqueue_wait

Step 2: Enqueue Operations

Switch/expand Execution
Space of Communicator

from Host to Device Stream

Submit

Kernel

Submit

Kernel

Send

send

Submit

Kernel KernelDevice

Host

Network

16

• Enqueue operation on stream and return immediately

• Request represents state of operation

• Stream associated with the resulting request

• Block stream to allow overlap or wait on the host for completion

• Stream-wait prevents execution of subsequent operations until completion

Nonblocking Operations

Submit

Kernel

Submit

Kernel

Isend Submit

Kernel Kernel

S-Wait

MPIX_Stream_wait(MPI_Request* request,
 MPI_Status* status);
MPIX_Stream_waitall(int count,
 MPI_Request request[],
 MPI_Status status[]);

send

Device

Host

Network

17

• Initialization binds operation to stream that is set on communicator

• MPI_Start enqueues operation start on stream

• Useful with partitioned operations to manage starting and completion

Persistent & Partitioned
Operations

Submit

Kernel

Submit

Kernel

Start Submit

Kernel Kernel

S-Wait

send

Pready

Start

MPIX_Stream_wait(MPI_Request* request,
 MPI_Status* status);
MPIX_Stream_waitall(int count,
 MPI_Request request[],
 MPI_Status status[]);

Device

Host

Network

18

Return ownership of non-persistent requests

Status(es) set before subsequent operations start

• Potentially in device memory (i.e., MPI implementation enqueues transfer)

Ensures that no subsequent operations on the associated streams execute before respective
operations are complete

Does not block calling thread

Step 3: Stream-Wait MPIX_Stream_wait(MPI_Request* request,
 MPI_Status* status);
MPIX_Stream_waitall(int count,
 MPI_Request request[],
 MPI_Status status[]);

19

Synchronizing a stream (e.g., via hipStreamSynchronize()) may not provide sufficient
progress for MPI operations

We may not have a request to poll on for progress in MPI

We do not want to force strong progress onto implementations

→ Need combined progress for device and MPI

MPIX_Comm_sync_stream blocks until stream is synchronized and all operations have completed

Step 4: Ensuring Fair
Progress for All MPIX_Comm_sync_stream(MPI_Comm comm);

Wait for
completion

20

Example: Allocate, Compute, Send, Copy, Wait
Enqueue
allocate

Associate
stream

Enqueue send

Enqueue
compute

Enqueue copy

Enqueue free

21

Using PMPI interception for [Send|Recv]_init, Start, Isend, Irecv

Based on Open MPI branch with Continuations*

Generalized requests for user-facing requests

No kernel launch, HIP-based triggers

• Using launchHostFunc to start operations from the host

• Events polled from the host

Using hipWriteValue & hipWaitValue to facilitate stream synchronization

Optional progress thread support

Graph capturing support (if stream is capturing)

Implementation

* Generic implementation in the works

Submit

KernelIsend Greq

Kernel

Submit

Wait
Value

S-Wait

Submit

Kernel

Isend
Host

Launch

Write
Value

C
ontinu

atio
n

Github: https://github.com/devreal/mpix-streams/

https://github.com/devreal/mpix-streams/

22

Benchmark:
variable length kernel → variable size message
→ variable size kernel

Performance results are mixed bag, progress
thread yields unsteady performance

Focus on functionality, not optimized
performance

RCCL benefits from communication kernel for
larger messages

Results

23

A benchmark suite with representative
applications that enqueue communication
on streams would help steer the design of

stream integration in MPI.

24

1. May MPI operations synchronize two execution spaces at once?
(i.e., may the calling thread block?)

2. Thread-specific binding of streams to communication objects
(requesting thread-specific association)

3. Device-side triggering of operations inside a kernel scheduled on the stream

4. Stream-based communication benchmark suite (e.g., using KokkosComm)

5. Explicit graph API integration

Open Topics

25

We can reuse existing infrastructure by associating streams with MPI objects

Extends existing semantics to compute streams (blocking, nonblocking, persistent, partitioned)

Requires 5 new MPI procedures for stream association, stream-wait & stream-sync

Performance benefits are not clear but programmability benefits from integration

→ Benchmark suite for different stream integration approaches

Restart discussion in the Hybrid & Accelerator WG

Conclusions & Future Work

26

This research was supported partly by NSF awards #1931347 and #1931384, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. We gratefully acknowledge the
provision of computational resources by the Oak Ridge National Laboratory (ORNL) and the High-
Performance Computing Center (HLRS) at the University of Stuttgart, Germany.

Acknowledgements

	Slide 1: Stream Support in MPI without the Churn
	Slide 2: Motivation
	Slide 3: Execution Spaces in MPI Today
	Slide 4: Why We Want Stream-Awareness
	Slide 5: Orthogonal: Device-Side Partitioned Operations
	Slide 6: Alternative: Device Bindings for MPI
	Slide 7: MPI & Streams: Prior Work
	Slide 8: Related: MPIX_Streams
	Slide 9: Related: MPIX_Enqueue
	Slide 10: In This Work
	Slide 11: In This Work
	Slide 12: Integrating With Existing Objects & Semantics
	Slide 13: Our Proposal
	Slide 14: Step 1: Associate Stream to Communicator
	Slide 15: Step 2: Enqueue Operations
	Slide 16: Nonblocking Operations
	Slide 17: Persistent & Partitioned Operations
	Slide 18: Step 3: Stream-Wait
	Slide 19: Step 4: Ensuring Fair Progress for All
	Slide 20: Example: Allocate, Compute, Send, Copy, Wait
	Slide 21: Implementation
	Slide 22: Results
	Slide 23
	Slide 24: Open Topics
	Slide 25: Conclusions & Future Work
	Slide 26: Acknowledgements

