q\\\‘ Stony Brook University

Joseph Schuchart, Institute for Advanced Computational Science, Stony Brook University
Joseph.Schuchart@stonybrook.edu

Edgar Gabriel, AMD

ooo

FAR .
BEYOND (8 IRCS g

‘\\\‘ Stony Brook University

Motivation

* Accelerators provide separate memory space and execution space

* Host controls device execution space through queues/streams

Queues

* Data produced by device becomes eventually available
for MPI to consume

Device Execution
Space

 Memory spaces exposed through new info keys ======

* Data received by MPI will be consumed by device kernels

Host Execution Space

MPI is blissfully unaware of
execution spaces so full

Host Memory Space Device Memory Space

synchronization is required
before calling MPI.

FAR)
CQ Incs INSTITUTE FOR ADVANCED
BEYOND RIS

‘\\\‘ Stony Brook University

Execution Spaces in MPI Today

MPI exclusively interacts with the host execution space

Blocking operations block the calling thread

Nonblocking (and persistent) operations are ordered with operations on the calling thread prior
to the starting MPI call

Applications must synchronize device streams producing data before calling MPI

Submit Submit

Host

Kernel

Device

Kernel

FAR :
\(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE 3

‘\\\‘ Stony Brook University

Why We Want Stream-Awareness

Correctness Performance

* Exposes the device execution space * Synchronization of queues blocks the host-thread

* Without proper synchronization MPI and drains the device

sees inconsistent data * Integration increases potential for overlapping

+ Source of errors in applications kernel submission and execution

* Enables MPI to interact with streams, e.g., to
enqueue memory transfers or reduction
operations

* Allow applications to order kernel
submission with MPI operations

Submit Submit Submit

Host Submit Submit

Network

Device Kernel

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND RS

Kernel

Kernel

‘\\\‘ Stony Brook University

Orthogonal: Device-Side Partitioned Operations

* Allow kernels to start parts of communication inside a kernel
* Enables fine-grain data transfers
e Still requires completion & start from the host

e Stream integration complements

Host Submit

Device

Kernel Pready

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
B E I o N D COMPUTATIONAL SCIENCE

5

‘\\\\ Stony Brook University

Alternative: Device Bindings for MPI

* Unlikely to offload all MPI functionality to devices
* Vendor libraries offload few operations supported by hardware, with constraints
» Significant burden on implementors

e Challenges: request management, stream-blocking, message matching, ...

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND

\ Stony Brook University

MPI & Streams: Prior Wor

* Two similar proposals that wrap compute streams
e MPIX_Streams [1]
* MPIX_Queue [2]

 MPI Operations are enqueued into a stream
* Dedicated stream/queue object
* API duplication

* Relying on strong progress

Exploring GPU Stream-Aware Message Passing
using Triggered Operations

Naveen Namashivayam
Hewlernt Packard Enterprise, USA
naveen.ravi@hpe.com
Nick Radcliffe
Hewlett Packard Enterprise, USA
nick.radcliffe @hpe.com

Abstract—Modern heterogeneous supercomputing systems are
comprised of compute blades that offer CPUs and GPUs. On
such systems, it is essential to move data efficiently between
these different compute engines across a high-speed network.
While current generation scientific applications and systems
software stacks are GPU-aware, CPU threads are still required
to orchestrate data moving communication operations and inter-
process synchronization operations.

A new GPU sire aware MPI c tion strategy called
stream-triggered (ST) communication is explored to allow offload-
ing both ¢ ion and ¢ ication control paths to the
GPU. The proposed ST strategy is impl d
on HPE Slingshot Interconnects over a new proprietary HPE
Slingshot NIC (Slingshot 11) using the supported triggered oper-
ations feature. Performance of the proposed new communication
strategy is evaluated using a microbenchmark Kkernel called
Faces, based on the nearest-neighbor communication pattern in
the CORAL-2 Nekbone benchmark, over a heterogeneous node
architecture consisting of AMD CPUs and GPUs.

Index Terms—heterogeneous supercomputing systems, CPU,
GPU, MPI, GPU-NIC Async, GPU Streams, GPU Control Pro-
cessors, Control Path, Data Path

I. INTRODUCTION

URRENT-generation scientific applications and systems-
Csoﬁwnrc stacks are using GPU-aware [30] Message
Passing Interface (MPI) [20] implementations. GPU-awareness
for inter-node MPI data movement using Remote Direct

e A e veen

JIET WY PO TGN

Krishna Kandalla
Hewlernt Packard Enterprise, USA
krishnachaitanya.kandalla@hpe.com
Larry Kaplan
Hewlett Packard Enterprise, USA
larry.kaplan@hpe.com

Trey White
Hewlen Packard Enterprise, USA
trey.white@hpe.com
Mark Pagel
Hewlett Packard Enterprise, USA
mark.pagel@hpe.com

kernel (K1) execution. Next, it ° launches, progresses, and
@ completes the inter-process communication/synchronization
operations. Subsequent compute kernels (K2) on the GPU
are @ launched only after the inter-process communication
operations have completed. This behavior creates potentially
expensive synchronization points at kernel boundaries that
require the CPU to synchronize with the GPU and Network
Interface Controller (NIC) devices.

1
I w1 kemel Lo () -,
e |
K1 Kemel | CPU waits for K1
Executioin | | o complete
0) o
Kemelgyme 2 F——-— -
e T WP Comms Canmer ™ |
| MP1 Comms
CPU wailts for MPI r— Execu
Comms to complete xecution
J
O oo
_ o
i ol Launch Carmphett
K2 Kemel
Execution |
L
L)
GPU
STREAM cPu INTERCONNECT

Fig. 1. Tllustrating sequence of events on a typical GPU-aware parallel appli-
cation that relies on MPI for inter-process communication and synchronization
operations.

FAR
BEYOND

[1] Zhou, H., Raffenetti, K., Guo, Y., Thakur, R.: MPIX stream: an explicit solution to hybrid MPI+X

aware message passing using triggered operations. (2022)

programming. In: Proceedings of the 29th European MPI Users’ Group Meeting, EuroMPI/USA 2022
[2] Namashivayam, N., Kandalla, K., White, T., Radcliffe, N., Kaplan, L., Pagel, M.: Exploring GPU stream-

&JiAcs

INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 7

Q\\\‘ Stony Brook University

Related: MPIX_ Streams

1. Create a stream from a ninfo object with device stream hex-
encoded

2. Create a stream-comm from that stream

3. Explicit enqueue functions for blocking & nonblocking
operations & wait

Proposed for broader use with multi-threading through
multiplexing

FAR [1] Zhou, H., Raffenetti, K., Guo, Y., Thakur, R.: MPIX stream: an explicit solution to hybrid MPI+X
BEYOND programming. In: Proceedings of the 29th European MPI Users’ Group Meeting, EuroMPI/USA 2022

MPIX_Info_set hex()
MPIX_Stream_create()
MPIX_Stream_comm_create()

MPIX_Send_enqueue()
MPIX_ Isend _enqueue()
MPIX_ Wait_enqueue()

L]
@ In' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 8

\ Stony Brook University

Related: MPIX_Enqueue MBDAGieaie ey

MPIX_ Free queue()

MPIX_Enqueue_send()

. Create an MPIX_Queue object MPIX_Enqueue_start()
. . MPIX_Enqueue_wait()
. Enqueue operations into the queue

MPIX_Queue queue;
hipStream t stream;

1
2
3. Start the queue
4

. Wait for the queue to complete L R

hipStreamCreateWithFlags (&stream, hipStreamNonBlocking);
MPIX_Create_gqueue (MPI_COMM_WORLD_DUP, (void «)stream, &queue);

if (my_rank == 0) {
launch_device_compute_kernel (src_bufl, src_buf2, src buf3, src_buf4, stream);

MPIX_ Enqueue_send(src_bufl, SIZE, MPI_INT, 1, 123, queue, &sreq[0]);
MPIX Enqueue_send(src_buf2, SIZE, MPI_INT, 1, 126, queue, &sreq[l]);
MPIX Enqueue send(src_buf3, SIZE, MPI_INT, 1, 125, queue, &sreq[2]);

MPIX Enqueue send(src:buf4, SIZE, MPI_INT, 1, 124, gqueue, &sreq[3]);

MPIX_Enqueue_start (queue); /» Enqueue_start enables triggering of all prior send ops */
MPIX_Enqueue_wait (queue); /* wait blocks only the current GPU stream =/
} else if (my_rank == 1) {
MPIX Enqueue recv (dst_bufl, SIZE, MPI_INT, 0, 123, queue, &rreq[0]);
MPIX Enqueue_recv (dst_buf2, SIZE, MPI_INT, 0, 126, queue, &rreql[l]);
MPIX Enqueue recv (dst_buf3, SIZE, MPI_INT, 0, 125, queue, &rreql2]);
MPIX Enqueue_recv (dst_buf4, SIZE, MPI_INT, 0, 124, queue, &rreq[3]);

MPIX Enqueue_start (queue);
MPIX Engueue_wait (queue);

launch_device_compute_kernel (dst_bufl, dst_buf2, dst_buf3, dst_buf4, stream);
}

hipStreamSynchronize (stream);/+ wait for all operations on stream to complete +/

MPIX Free_queue (gqueue);
hipStreamDestroy (stream);

FAR [2] Namashivayam, N., Kandalla, K., White, T., Radcliffe, N., Kaplan, L., Pagel, M.: Exploring GPU stream-

[]
BEYOND aware message passing using triggered operations. (2022) Cﬁ |ncs INSTITUTE FOR ADVANCED .

‘\\\\ Stony Brook University

In This Work

* Explore possible design of minimal extension for device stream integration in MPI

* Avoid significant expansion of MPI API

* Apply existing operation semantics to device streams s
Enqueue
Queue send
Partitioned Psend
, Send
Persistent L
init
Non- Isend Irsend Ibsend
Blocking
Blocking Send Rsend Bsend
Normal Ready Buffered
Eé%OND G- IACS wvswease |,

‘\\\\ Stony Brook University

In This Work

* Explore possible design of minimal extension for device stream integration in MPI

* Avoid significant expansion of MPI API

* Apply existing operation semantics to device streams s
Partitioned Psend
Persi Send Stream
ersistent init %upport
Non- Isend //’ Irsend Ibsend
Blocking ,
Blocking sénd Rsend Bsend
Normal Ready Buffered
FAR :
BEYOND 3 IACS s

‘\\\\ Stony Brook University

Integrating With Existing Objects & Semantics

Communication objects in MPI provide context for operations:
 Communicators provide process mapping & communication contexts
Windows hold memory & contexts for RMA operations

* Files provide I/O context A

Partitioned Psend

. Send
Persistent

Existing semantics cover all use-cases init

* Blocking: FIFO start and completion Bl':g;-n . lsend Irsend lbsend

* Nonblocking: FIFO start, deferred completion socking| send Reend Bsend

* Persistent & Partitioned: prior setup, FIFO start, deferred completion ‘
Normal Ready Buffered

FAR &) IACS oz ronovscro

COMPUTATIONAL SCIENCE 12

BEYOND

‘\\\\ Stony Brook University

Our Proposal

1. Associate stream with communicator/file/window.

2. Engueue operations (blocking, nonblocking, start).

3. Enqueue wait if needed, potentially after enqueueing more work.
4. Synchronize stream (eventually).

FAR

L]
‘ (CQ IHCS INSTITUTE FOR ADVANCED
BE o N D COMPUTATIONAL SCIENCE 13

‘\\\\ Stony Brook University

Step 1: Associate Stream to Communicator

MPIX_Comm_set_stream(MPI_Comm comm,
void* steam,
const char* kind,
MPI_Info info,
int* flag);

Analoguous for Files and Windows

Stream passed via ‘void*" (e.g., hipStream_t*)

N«

Stream type described as string (e.g., “hip”, “cuda”, “sycl”)

Flag returns 1 if MPI supports this type, O otherwise

MPIX_Comm_get_stream(MPI_Comm comm,

void* stream,
Query stream (if previously associated) int* flag);

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND SRS,

‘\\\‘ Stony Brook University

Step 2: Enqueue Operations

Blocking Operations

* Setup operation on stream (memory transfers / work descriptor / kernel launch)
* Operations will be pending on stream
* Prevent execution of subsequent operations

MPIX_Queue equivalence:

MPIX_Enqueue_send = MPIX_Enqueue_start - MPIX_Enqueue_wait

Switch/expand Execution

Host

Network

Submit | Send | Submit § Submit Space of Communicator
m from Host to Device Stream
Kernel L Kernel

Device Kernel Kernel

FAR :
@ IHCS INSTITUTE FOR ADVANCED
BEYOND

15

‘\\\‘ Stony Brook University

NOn bIOCki ng Operations MPIX_Stream_wait(MPI_Request* request,

MPI_Status™ status);
MPIX_Stream_waitall(int count,
MPI_Request request[],
MPI_Status statusl]);

* Enqueue operation on stream and return immediately

* Request represents state of operation

e Stream associated with the resulting request

e Block stream to allow overlap or wait on the host for completion

e Stream-wait prevents execution of subsequent operations until completion

Submit | Isend ‘ Submit I I Submit
Kernel L Kernel

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
B E I o N D COMPUTATIONAL SCIENCE 16

Host

Network

Device

‘\\\‘ Stony Brook University

Pe rSiSt? nt & Pa rt it i on Ed MPIX_Stream_wait(MPI_Request* request,
Operatlons MPI_Status* status);

MPIX_Stream_waitall(int count,
MPI_Request request[],
MPI_Status statusl]);

* |nitialization binds operation to stream that is set on communicator
 MPI_Start enqueues operation start on stream
e Useful with partitioned operations to manage starting and completion

Submit Submit § S-Wait Start Submit
Kernel Kernel Pready |,

Kernel

Host

Network

Kernel

FAR :
\(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE 17

Device

‘\\\\ Stony Brook University

Ste p 3 . St ream 'Wa it MPIX_Stream_wait(MPI_Request* request,

MPI_Status™ status);
MPIX_Stream_waitall(int count,

MPI_Request request[],
Return ownership of non-persistent requests MPI_Status status[]);

Status(es) set before subsequent operations start
* Potentially in device memory (i.e., MPl implementation enqueues transfer)

Ensures that no subsequent operations on the associated streams execute before respective
operations are complete

Does not block calling thread

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BE I o N D COMPUTATIONAL SCIENCE

18

‘\\\\ Stony Brook University

Step 4: Ensuring Fair
Progress for All

MPIX_Comm_sync_stream(MPI_Comm comm);

Synchronizing a stream (e.g., via hipStreamSynchronize()) may not provide sufficient

progress for MPI operations

We may not have a request to poll on for progress in MPI

We do not want to force strong progress onto implementations

- Need combined progress for device and MP!I

MPIX_Comm_sync_stream blocks until stream is synchronized and all operations have completed

FAR
BEYOND

‘ Ei) L]
In' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 19

‘\\\\ Stony Brook University

Example: Allocate, Compute, Send, Copy, Wait

rank ==

hipMallocAsync((voidskk)&buf_dev, SIZExsizeof(buf_dev[@]), stream);
fill<<<dim3(SIZE/blockSize), dim3(blockSize), @, stream>>>(buf_dev, SIZE);
MPIX_Comm_set_stream(MPI_COMM_WORLD, "hip", &stream, MPI_INFO_NULL, &flag);
if (!flag) {
std::cout << "MPIX _Comm_set_stream failed to set the stream!" << std::endl;
std::abort();

Associate
stream

¥
MPI_Isend(buf_dev, SIZE, MPI_INT, recv_rank, @, MPI_COMM_WORLD, &req);

hipMemcpyAsync(buf_host, buf_dev, SIZExsizeof(buf_dev([0]), stream)d
MPIX_Stream_wait(&req, MPI_STATUS_IGNORE);

hipFreeAsync(buf_dev, stream);
MPIX_Comm_sync_stream(MPI_COMM_WORLD) ;

Wait for
completion

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND SRS

‘\\\‘ Stony Brook University

Implementation

Submit
Using PMPI interception for [Send|Recv] init, Start, Isend, Irecv Kernel
Based on Open MPI branch with Continuations* Isen@onsih

Generalized requests for user-facing requests

Kernel

0
o
=
=3
>
c
o

No kernel launch, HIP-based triggers
 Using launchHostFunc to start operations from the host

* Events polled from the host

Using hipWriteValue & hipWaitValue to facilitate stream synchronization

Optional progress thread support

Graph capturing support (if stream is capturing)

FAR * . Lo .
BEYOND Generic implementation in the works ey, IACS smmmems
Github: https://github.com/devreal/mpix-streams/

https://github.com/devreal/mpix-streams/

‘\\\\ Stony Brook University

Results

Benchmark:

variable length kernel - variable size message

- variable size kernel

Performance results are mixed bag, progress
thread yields unsteady performance

Focus on functionality, not optimized

performance

RCCL benefits from communication kernel for

larger messages

FAR
BEYOND

Normalized Runtime

Normalized Runtime

18

=@ Synchronous (1)

=8— RCCL(1)
1.6 4 ~® Stream (callback) (1)

. === Stream (events) (1)

=3é= Stream (PT, callback) (1)

== Stream (PT, events) (1)
1.4
1.2
1.0 1 S it ‘%
0.8 \\

\
\
0.6 T T T T T T T T
16K 64K 256K 1024K 4M 16M 64M 256M
Size of Message [B]
(a) Short kernel (1 iteration).

1.8

=@ Synchronous (100)

=& RCCL (100)
1.6 =& Stream (callback) (100)

) == Stream (events) (100)

== Stream (PT, callback) (100)

== Stream (PT, events) (100)
1.4
1.2
1.0 1 =i

*\‘
\\
0.8 \
A

0.6 -

16K 64K 256K 1024K 4M 16M 64M 256M
Size of Message [B]

(c) Medium kernel (100 iterations).

Normalized Runtime

Normalized Runtime

B
©

0
o

=
IS

-
N
L

=
=}
L

o
©

o
o

=8- Synchronous (10)
~#— RCCL(10)

| =@ Stream (callback) (10)

m=pm= Stream (events) (10)
=3é= Stream (PT, callback) (10)

=4~ Stream (PT, events) (10)

i

X

T T T T T T T T
16K 64K 256K 1024K 4M 16M 64M 256M
Size of Message [B]

(b) Medium kernel (10 iterations).

1.8
=8 Synchronous (1000)
=& RCCL (1000)
1.6 4 =& Stream (callback) (1000)
. === Stream (events) (1000)
== Stream (PT, callback) (1000)
i == Stream (PT, events) (1000)
1.21
101 & s -
.
0.8
0.6

16K 64K 256K 1024K 4M 16M 64M 256M
Size of Message [B]

(d) Long kernel (1000 iterations).

Fig. 4: Normalized runtime of different implementations.

‘ g) L]
In' S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE 22

‘\\\‘ Stony Brook University

A benchmark suite with representative
applications that enqueue communication

on streams would help steer the design of
stream integration in MPI.

FAR ,
@ Incs INSTITUTE FOR ADVANCED
BEYOND RRSOAE

‘\\\\ Stony Brook University

Open Topics

1. May MPI operations synchronize two execution spaces at once?
(i.e., may the calling thread block?)

2. Thread-specific binding of streams to communication objects
(requesting thread-specific association)

Device-side triggering of operations inside a kernel scheduled on the stream
4. Stream-based communication benchmark suite (e.g., using KokkosComm)

Explicit graph APl integration

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND

24

‘\\\\ Stony Brook University

Conclusions & Future Work

We can reuse existing infrastructure by associating streams with MPI objects
Extends existing semantics to compute streams (blocking, nonblocking, persistent, partitioned)

Requires 5 new MPI procedures for stream association, stream-wait & stream-sync

Performance benefits are not clear but programmability benefits from integration

- Benchmark suite for different stream integration approaches

Restart discussion in the Hybrid & Accelerator WG

FAR :
‘(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE

25

‘\\\\ Stony Brook University

Acknowledgements

This research was supported partly by NSF awards #1931347 and #1931384, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. We gratefully acknowledge the
provision of computational resources by the Oak Ridge National Laboratory (ORNL) and the High-
Performance Computing Center (HLRS) at the University of Stuttgart, Germany.

e
’-‘ \
\ EXASCAHALE
) COMPUTING
\ PROJECT

% OAK RIDGE T gL R I o
FAR |

National Laboratory
BEYOND Y iRCS s

26

	Slide 1: Stream Support in MPI without the Churn
	Slide 2: Motivation
	Slide 3: Execution Spaces in MPI Today
	Slide 4: Why We Want Stream-Awareness
	Slide 5: Orthogonal: Device-Side Partitioned Operations
	Slide 6: Alternative: Device Bindings for MPI
	Slide 7: MPI & Streams: Prior Work
	Slide 8: Related: MPIX_Streams
	Slide 9: Related: MPIX_Enqueue
	Slide 10: In This Work
	Slide 11: In This Work
	Slide 12: Integrating With Existing Objects & Semantics
	Slide 13: Our Proposal
	Slide 14: Step 1: Associate Stream to Communicator
	Slide 15: Step 2: Enqueue Operations
	Slide 16: Nonblocking Operations
	Slide 17: Persistent & Partitioned Operations
	Slide 18: Step 3: Stream-Wait
	Slide 19: Step 4: Ensuring Fair Progress for All
	Slide 20: Example: Allocate, Compute, Send, Copy, Wait
	Slide 21: Implementation
	Slide 22: Results
	Slide 23
	Slide 24: Open Topics
	Slide 25: Conclusions & Future Work
	Slide 26: Acknowledgements

