
Profile Util library: A quick

and easy way to get MPI,

OpenMP and GPU runtime

information

Dr. Pascal Jahan Elahi

Pawsey Supercomputing Research Centre

Perth, WA

EuroMPI 2024

2

Acknowledgment
of Country

I acknowledge the traditional
owners of this land, the Noongar
Whadjuk People– their ancestors
and elders, past, and present – as
the original custodians of this land.

Ngaala Kaaditji Noongar moort

keyen kaadak nidja boodja

Meteorites by Wajarri Yamatji artist Margaret Whitehurst
E

u
ro

M
P

I
2

0
2

4

3

Origin: Understanding MPI Issues

E
u

ro
M

P
I

2
0

2
4

• Phase-1 Setonix passed HPL tests but there were a number of issues
encountered by users running production MPI-enabled codes. Not
obvious what the underlying issues were and whether they were all
related.

• Not all workflows impacted but some key stakeholders could not
run.

• We did NOT have a simple set of diagnostic-oriented MPI tests.
• MPI performance was measured using OSU Micro Benchmarks (OMB).

However, these are not designed for debugging. OMB could pass when
production codes would fail.

• Motivated by understanding these issues and realising there was a
gap, we developed a suite of MPI stress tests focused on.

This was the crucible for the development of profile_util

4

Profile_util

E
u

ro
M

P
I

2
0

2
4

Motivation

• Addressing performance bottlenecks critical for running efficiently at scale. Profiling tools essential for identifying
performance issues by measuring various metrics such as CPU usage, GPU usage, memory consumption, and
execution time.

• Wide variety available but many closed-source commerical products, often requiring instrumenting a code, or are
tailored to a specific API (see for example Linaro Forge, Intel VTune, NVIDIA Nsight Compute, Omniperf).

• Profiling tools also not designed to provide a view into a code’s performance in daily production-scale runs, where
minimal impact and a higher-level view desirable

Profile_util

• Open-source library which can be simply integrated into codes for production-scale runs
https://github.com/pelahi/profile_util

• C++20, CMAKE build system, and MPI, OpenMP, and GPU (CUDA and HIP) parallel APIs

• Simple API for integration into C++ code

https://github.com/pelahi/profile_util

5

Profile_util

E
u

ro
M

P
I

2
0

2
4

Simple API for stdout but also similar API for logging to ostream

6

API Examples

E
u

ro
M

P
I

2
0

2
4

• LogParallelAPI(): reports the parallel API’s used.

• LogBinding(): reports the overall binding of cores, GPU information (such as PCI address) for every MPI process

7

API Examples

E
u

ro
M

P
I

2
0

2
4

• LogTimeTaken(timer): reports the time taken from creation of Timer to point at which this function is called.
Also have GPU analogue LogTimeTakenOnDevice(timer)

• LogCPUUsage(sampler): reports statistics of CPU usage over time taken. Also have GPU analogue,
LogGPUUsage(sampler)

• LogMemUsage(): reports current & peak usage of process. Also have system analogue reporting memory state of
Node, LogSystemMem()

8

Use Case 1: Debugging MPI Issues on Setonix

E
u

ro
M

P
I

2
0

2
4

• Despite passing acceptance tests, a number of researchers running more complex workflows
encountered issues during Setonix Phase-1 (HPE Cray EX system, CPU-only). Main issues:

Memory Leaks Multi-node jobs were crashing with a variety of reported errors: bus errors; generic SLURM kill
errors; out-of- memory errors; xpmem or Open Fabrics Interface errors.

Poor Scaling Multi-node scaling of software with significant pt2pt communication did not scale well past two
nodes. Even a much older Cray XC system outperformed Setonix by factors of ≳5 when using ≳ 96
cores across multiple nodes.

Reduced Node Memory Available memory on idle nodes slowly decreased.

Large-comm Instability Crashes occurred when running jobs with pt2pt communication with large number of processes (≳
700). Additionally, hangs were observed when using asynchronous pt2pt communication with high
message counts.

• MPI performance was measured using OSU Micro Benchmarks (OMB). However, these are not
designed for debugging. OMB could pass when production codes would fail. Profiling productions
codes for regression testing not ideal.

• Develop simple MPI unit tests with profile_util logging to look at code AND node at runtime

9

Use Case 1: Debugging MPI Issues on Setonix

E
u

ro
M

P
I

2
0

2
4

Memory Leaks (and Reduced Node Memory)

Crime Scene:

• Showed up in multi-node communication when communication included inter-node communication.

• Process memory reasonable but node memory showed clear reduction in available memory during communication.

• Amount of memory consumed dependent on comm size.

• Errors occurred when the amount of available node memory not enough given memory consumed by process or

beyond total physical memory available on node.

• Jobs that completed would slowly reduce the amount of memory available on the node afterwards.

• Crashes not only left messages in kernel ring buffer that could involve the memory but could leave errors pertaining to

Setonix Slingshot interconnet. In this case, node unusable as all subsequent MPI jobs would crash upon initialization.

Evidence found by using simple MPI unit tests with lots of memory logging (both process with

LogMemUsage AND node LogSystemMem) around MPI_Send/Isend/Ssend/MPI_Gather, etc.

Lines of evidence pointed to libfabric since communication had to involve inter-node communication

and memory consumed not visible in user space.

10

Use Case 2: GPU Performance

E
u

ro
M

P
I

2
0

2
4

• New GraceHopper GPUs showed initially unusual performance (CPU and GPU codes slower than
expected, variable). Again, difficult to diagnose -> Unit tests with profile_util sampling & timing

11

Use Case 2: GPU Performance

E
u

ro
M

P
I

2
0

2
4

• Unit tests profiled showed CPU usage not drop as more threads add BUT GPU performance drops
significantly after certain number of threads used.

12

Use Case 2: GPU Performance

E
u

ro
M

P
I

2
0

2
4

• Performance impacted by power envelop of the GraceHopper chip. Hopper GPU power
consumption heavily throttled as Grace CPU heavily used. However, drop in CPU performance
indicates that CPU also throttled.

13

Profile_util

E
u

ro
M

P
I

2
0

2
4

• Simple, easy to use library with C++ API. C/Fortran API in progress.

• Adds parallelism reporting, core affinity, MPI-aware logging, GPU
(CUDA/HIP) logging, through simple API with minimal impact to code
performance.

• So feel free to use this library to add simple profiling information to any
MPI/OpenMP/CUDA/HIP codes

Any Questions?

	Slide 1: Profile Util library: A quick and easy way to get MPI, OpenMP and GPU runtime information Dr. Pascal Jahan Elahi Pawsey Supercomputing Research Centre Perth, WA EuroMPI 2024
	Slide 2: Acknowledgment of Country
	Slide 3: Origin: Understanding MPI Issues
	Slide 4: Profile_util
	Slide 5: Profile_util
	Slide 6: API Examples
	Slide 7: API Examples
	Slide 8: Use Case 1: Debugging MPI Issues on Setonix
	Slide 9: Use Case 1: Debugging MPI Issues on Setonix
	Slide 10: Use Case 2: GPU Performance
	Slide 11: Use Case 2: GPU Performance
	Slide 12: Use Case 2: GPU Performance
	Slide 13: Profile_util
	Slide 14: Any Questions?

