
Partitioned
Communication to Support

Hybrid Programming
PRESENTER: DR. RYAN E. GRANT

STUDENT CREDIT: YILTAN TEMUCIN, JORDAN ABT, ELIZABETH REID

Hybrid Programming
•More than just MPI+X in the traditional sense
• Not just MPI+OpenMP

•Support for large amounts of concurrency
•Not necessarily on the CPU-only
• Need solutions for accelerators as well

•Let’s examine how we got here and what we need going forward and
how Partitioned communication let’s us get there….

Why Partitioned? Why Now?
MPI use cases continue to evolve

◦ MPI+X implies the use of threads, e.g. OpenMP

High Bandwidth Memory (HBM) plays a role
• Faster memory built on-die/in-package but you get less capacity than previously
• Buy DRAM for channels and get a lot of space you can use, not so with HBM
• MPI processes can take a lot of memory each

•Core counts skyrocketing
• 192 cores in an AMD EPYC, 384 in a dual-socket node
• Remember 56-core used to be a many-core architecture?

•Accelerators
• Can’t rely on CPUs to move your messages anymore, different architectures, new challenges

What do we want in a solution?
Desirable/required features:
Low overhead
◦ Having many messages and ranks causes message matching/steering overhead

Similar semantics to existing concurrency solutions
◦ Ease of programmability

Decouple message passing setup/handling from data movement
◦ Don’t need to setup at the time of sending
◦ Useful for accelerators

Minimal locking/sycnhronization

Why not thread_multiple?
Threads introduce significant issues with concurrency in existing MPI
implementations
◦ MPI_THREAD_MULTIPLE is hard and implementations don’t do it well
◦ Difficult to support concurrency without encountering conflicts

Need to expose the parallelism but without locking/synchronization
◦ Existing solutions already provide a way
◦ Build without conflicts between execution context (threads) and you don’t need to worry

about locking

Concurrency costs
Have known about matching list performance
for sometime

Non-viable with many many messages, so you
can either avoid many messages that need
matching or reduce costs of matching

Partitioned avoids the matching outside of init
and avoids wildcards to let other matching
happen in efficient manners (e.g. hashing)

As recent work has shown that some applications have queue lengths in excess
of 1000 messages [11], the naive results include the case where each thread posts
512 receives, in addition to 9 and 27 point stencils. For the two- and three-
dimensional decompositions, two stencils are considered for each: 5 and 9 point
for 2d, and 7 and 27 point for 3d.

Experiments were run on a Cray XC40 using KNL nodes with 68 cores and
four hardware threads per core, for a total of 272 possible threads. This system
uses the Aries Interconnect. In all experiments, the receiving process is never
oversubscribed. Since we only model threads at the boundaries of the decompo-
sition, in some cases we are able to present data that goes beyond the expected
number of total receiving threads for the system. We allow for oversubscription
of sending threads. For the data points where this occurs the oversubscription
is noted in the figure captions. To avoid overhead incurred by thread start up
costs, no data is collected during initial trials. Runs are distributed across dif-
ferent nodes as determined by the resource manager (SLURM), and all values
given are averaged across ten runs.

4.2 Results

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 1. Naive Decomposition. Oversubscription does not occur. Grey region highlights
drain times � 1 ms.

Figure 1(a) shows the average search depths observed for the naive decompo-
sition using 9 and 27 point stencils (8 and 26 messages per thread, respectively),
and 512 messages per thread. Average search depths increase rapidly as the
number of threads grow. For instance, at 64 threads the average search depth
for 512 messages-per-thread is over 3000 list elements, and the 27 point stencil
exceeds 1000 at 256 threads.

Unsurprisingly, these inflated search depths translate into onerous search
times (figure 1(b)). In this and subsequent graphs, the grey region highlights the

Data from Measuring Multithreaded Message Matching Misery, EuroPar 2018, Whit Schonbein et al.

Concurrency costs
Need to stay out of the grey region

◦ Breakdown occurs here as we are using more
time to communicate than the time needed to do
an iteration of simulation

By keeping queues very short we can work at
fast speeds

◦ Do this by avoiding message matching (almost)
entirely with partitioned

◦ But still get matching-type semantics for
completion

As recent work has shown that some applications have queue lengths in excess
of 1000 messages [11], the naive results include the case where each thread posts
512 receives, in addition to 9 and 27 point stencils. For the two- and three-
dimensional decompositions, two stencils are considered for each: 5 and 9 point
for 2d, and 7 and 27 point for 3d.

Experiments were run on a Cray XC40 using KNL nodes with 68 cores and
four hardware threads per core, for a total of 272 possible threads. This system
uses the Aries Interconnect. In all experiments, the receiving process is never
oversubscribed. Since we only model threads at the boundaries of the decompo-
sition, in some cases we are able to present data that goes beyond the expected
number of total receiving threads for the system. We allow for oversubscription
of sending threads. For the data points where this occurs the oversubscription
is noted in the figure captions. To avoid overhead incurred by thread start up
costs, no data is collected during initial trials. Runs are distributed across dif-
ferent nodes as determined by the resource manager (SLURM), and all values
given are averaged across ten runs.

4.2 Results

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 1. Naive Decomposition. Oversubscription does not occur. Grey region highlights
drain times � 1 ms.

Figure 1(a) shows the average search depths observed for the naive decompo-
sition using 9 and 27 point stencils (8 and 26 messages per thread, respectively),
and 512 messages per thread. Average search depths increase rapidly as the
number of threads grow. For instance, at 64 threads the average search depth
for 512 messages-per-thread is over 3000 list elements, and the 27 point stencil
exceeds 1000 at 256 threads.

Unsurprisingly, these inflated search depths translate into onerous search
times (figure 1(b)). In this and subsequent graphs, the grey region highlights the

But concurrency helps

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Message Size (bytes)

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Message Size (bytes)

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 5: Impact of number of threads on message rate, with processes P = 1 . . . 16 and threads T = 2 and T = 4 per process.

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (bytes)

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (bytes)

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

Figure 6: Impact of number of threads on bandwidth, with processes P = 1 . . . 16 and threads T = 2 and T = 4 per process.

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Expected Queue Depth

P=1
P=1, T=2

P=2, T=2
P=4, T=2

P=8, T=2
P=16, T=2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

M
e

s
s
a

g
e

 R
a

te
 (

x
1

0
6
)

Expected Queue Depth

P=1
P=1, T=4

P=2, T=4
P=4, T=4

P=8, T=4
P=16, T=4

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128
256

512

Figure 7: Impact of shared communication state on message rate for 8-byte messages. The expected queue length is varied, and configurations
with processes P = 1 . . . 16 and threads T = 2 and T = 4 per process are evaluated.

Impact of communication concurrency on message rate per second
for P processes and T threads per process on an Intel Phi

Takeaway: Fewer threads = better performance, due to poor MPI multi-threading
James Dinan, Ryan E. Grant, Pavan Balaji, Dave Goodell, Douglas Miller, Marc Snir, Rajeev Thakur, “Enabling communication concurrency through flexible MPI Endpoints”, International Journal of High
Performance Computing Applications, Volume 28, Issue 4, pp. 390-405, November 2014. Impact factor: 1.63

Partitioned
Communication

MPI Partitioned Communication
Concepts
Many actors (threads) contributing to a larger operation in MPI

◦ Same number of messages as today!
◦ No new ranks – no need to understand target thread

Many threads work together to assemble a message
◦ MPI only has to manage knowing when completion happens
◦ These are actor/action counts, not thread level collectives

Persistent-style communication
◦ Init…(Start…test/wait)…free

No heavy MPI thread concurrency handling required
◦ Leave the placement/management of the data to the user

No more complicated packing of data, send structures when they become available

10

How to use Partitioned MPI
Like persistent communications, setup the operation

int MPI_Partitioned_send_init(void *buf, int partitions, int count,
 MPI_Datatype data_type, int to_rank, int to_tag, int num_partitions,
 MPI_Info info, MPI_Comm comm, MPI_Request *request)

Start the request
int MPI_Start(MPI_Request request)

Add items to the buffer
int MPI_Pready(int partition, MPI_Request request)
MPI_Pready is thread-safe and meant to be called from separate threads

Wait on completion
int MPI_Wait(MPI_Request request)

Optional: Use the same partitioned send over again
int MPI_ Start(MPI_Request request)

11

Persistent Partitioned Buffers
Expose the “ownership” of a buffer as shared to MPI

Need to specify the operation to be performed before contributing segments

MPI implementation doesn’t have to care about sharing
◦ Only needs to know how many times it will be called

Applications are required to manage thread buffer ownership such that the buffer is
valid

◦ The same as would be done today for codes where many threads work on a dataset (with the
exception of reductions)

Result: MPI is thread agnostic with a minimal synchronization overhead
(atomic_fetch_and_add)

◦ Can alternatively use a task model instead of threads, IOVEC instead of contiguous buffer

12

New Type of Overlap
“Early bird communication”
Early threads can start moving data right away
Can implement using RDMA to avoid message matching

13

Thread
#1

Arrival

Partitioned Send Timeline

Thread #1 Data
Transfer

Thread
#2

Arrival

Thread #2 Data
Transfer

Thread
#3

Arrival

Thread #3 Data
Transfer

Thread
#4

Arrival

Thread #4 Data
Transfer

Partitioned Send
Com

pletion

Al
l T

hr
ea

ds
 C

om
pu

te

Thread
#1

Arrival

Traditional Single Threaded Send Timeline

Thread #1 Data
Transfer

Thread
#2

Arrival

Thread #2 Data
Transfer

Thread
#3

Arrival

Thread #3 Data
Transfer

Thread
#4

Arrival

Thread #4 Data
Transfer

Send Com
pletion

Al
l T

hr
ea

ds
 C

om
pu

te

All threads have joined
and send call is issued

GPUs and Accelerators
GPUs cannot run MPI libraries natively – at least not well
Need coordination for network transfers
◦ But don’t want to setup communications from step one on the GPU/Accelerator

Minimize overhead of communication initialization
◦ Many potential notifications – must be lightweight

Existing NIC hardware can use triggering
◦ Need a mechanism in MPI to do lightweight triggering

Communication can be optimized by host CPU
◦ CPU can optimize to network before the transfer takes place
◦ Optimize number of transfers, when things trigger

Allow for Better Parallelism in MPI
Concept of many actors (threads/warps/thread blocks) contributing to a larger operation in MPI

◦ Same number of messages as you use in isend/irecv today
◦ No new ranks

Many threads work together to assemble a message
◦ MPI only has to manage knowing when completion happens
◦ These are actor/action counts, not thread level collectives, to better enable tasking models

No heavy MPI thread concurrency handling required
◦ Leave the placement/management of the data to the user
◦ Knowledge required: number of workers, which is easily available

Bonus: Match well with Offloaded NIC capabilities
◦ Use counters for sending/receiving
◦ Utilize triggered operations to offload sends to the NIC

Persistent Partitioned Buffers
Expose the “ownership” of a buffer as a shared to MPI

Need to describe the operation to be performed before contributing segments

MPI implementation doesn’t have to care about sharing
◦ Only needs to understand how many times it will be called

Threads are required to manage their own buffer ownership such that the buffer is valid
◦ The same as would be done today for code that has many threads working on a dataset (that’s not

a reduction)

Result: MPI is thread agnostic with a minimal synchronization overhead (atomic_inc)
◦ Can alternatively use task model instead of threads, IOVEC instead of contiguous buffer

#define NUM_THREADS 8
#define NUM_TASKS 64
#define PARTITIONS NUM_TASKS
#define PARTLENGTH 16
#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH
int main(int argc, char *argv[]) /* send-side partitioning */
{
 double message[MESSAGE_LENGTH];
 int send_partitions = PARTITIONS,
 send_partlength = PARTLENGTH,
 recv_partitions = 1,
 recv_partlength = PARTITIONS*PARTLENGTH;
 int count = 1, source = 0, dest = 1, tag = 1,
 flag = 0;
 int myrank;
 int provided;
 MPI_Request request;
 MPI_Info info = MPI_INFO_NULL;
 MPI_Datatype send_type;
 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
 if (provided < MPI_THREAD_SERIALZED) MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
 MPI_Type_commit(&send_type);

 if (myrank == 0) /* code for process zero */
 {
 MPI_Psend_init(message, send_partitions, count, send_type, dest, tag,
 info, MPI_COMM_WORLD, &request);
 MPI_Start(&request);

 #pragma omp parallel shared(request) num_threads(NUM_THREADS)
 {
 #pragma omp single
 {
 /* single thread creates 64 tasks to be executed by 8 threads */
 for (int partition_num=0;partition_num<NUM_TASKS;partition_num++)

 {
 #pragma omp task firstprivate(partition_num)
 {
 /* compute and fill partition #partition_num, then mark ready: */
 /* buffer is filled in arbitrary order from each task */
 MPI_Pready(request, partition_num);
 } /*end task*/
 } /* end for */
 } /* end single */
 } /* end parallel */
 while(!flag)
 {
 /* Do useful work */
 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
 /* Do useful work */
 }
 MPI_Request_free(&request);
 }
 else if (myrank == 1) /* code for process one */
 {
 MPI_Precv_init(message, recv_partitions, recv_partlength, MPI_DOUBLE,
 source, tag, info, MPI_COMM_WORLD, &request);

 MPI_Start(&request);
 while(!flag)
 {
 /* Do useful work */
 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
 /* Do useful work */
 }
 MPI_Request_free(&request);
 }
 MPI_Finalize();
 return 0;
}

Example from MPI-4.0

Opportunities for Optimization
MPI implementations can optimize data transfer under the covers:

2.1 A Solution for Many Applications
Existing multi-threaded code can be written such that

many threads (actors) contribute to a single solution in a
shared memory bu↵er. The need for each of the threads
to have knowledge of each other is limited, with the ba-
sic knowledge of where the solution must be written to for
each thread being of primary concern. As such, the need for
thread to thread communication in MPI is concomitantly
limited, the access to the larger input bu↵er of data used
and the output bu↵er for the solution is the main concern.
For example, for a stencil code, one might further break
up the simulation space within a given MPI process in the
same way that it was done for the multiple processes them-
selves. The data to be exchanged (a face of a 3D simulation
space) with the process neighbor only needs the face data
for the process. It does not need to understand the number
of threads nor the layout of the data that each of the threads
is working on in another process. What is needed is that the
entire face data be sent to the other neighbor process.

To enable this type of computation/communication in MPI
with minimal overheads, the threads can deliver their por-
tion of the overall data to MPI with an MPI_Partitioned_

Add_to_buffer
1 call. The intention of this proposed func-

tion is to provide a portion of data to an operation that will
collect many pieces of data from many actors and deliver
the payload to the requested MPI process. This approach
requires that some information about the partitioned opera-
tion be expressed to MPI prior to writing to any bu↵ers. The
partitioned operation interface leverages the persistent com-
munications interface in MPI to provide this data. First, the
operation must be initialized; this will provide the required
information to setup the bu↵ers and the synchronization
methods (which could be as simple as an atomic increment
on a counter). This operation can subsequently be started
and finished as a normal persistent communication would
be, using the same semantics as a traditional persistent com-
munication, with modifications for the partitioned nature of
the operation. An MPI_Partitioned_Send_Create(Comm,

to_rank, to_tag, base_address, data_type, count, num_

contributors, &request)
2 call can be used to initialize the

partitioned send, which is similar to a persistent operation
setup. The mechanisms used to start/stop the operation
are similar to persistent operations as well. Calling a MPI_

Start(request) call will activate the partitioned send, but
the actual data transmission will only start/complete once
the parts of the message are delivered to MPI. The most
näıve implementation of this would be that no data be sent
over the wire until all parts of the overall communication
had been assembled by MPI (of course parts of the message
could be sent before all parts are received for optimization
purposes, as will be discussed later). The method of fin-
ishing a partitioned send is a simple MPI_Wait(request) as
one would typically wait for a request to complete in MPI.
This process is illustrated at a high level in Figure 1. It is
important to note that in this paper we refer to the actors
on the bu↵er as threads, when they could be tasks instead.

While similar communication could be accomplished with
many individual smaller MPI_Send calls from each thread,
this partitioned data approach has several key advantages.
First, the overhead of synchronization between threads can

1A new proposed API by the authors.
2Additional new API functionality.

 Thread ID # 15 places
data to index 15

Thread ID #37 places
data to index 37

Subsegment of the message is complete
with the addition of data to index #15, so
message segment is sent

Origin
Shared
Memory
Buffer

Target
Shared
Memory
Buffer

Message is partially completed on
the target side

Concurrently

Figure 1: An example of multiple threads placing
data into a partitioned bu↵er with partial bu↵er
sending capabilities in the MPI library.

be reduced, inasmuch as each contributor to the single larger
MPI operation can add its respective data and all that is
needed is an atomic increment to maintain the count on the
number of contributions to the partitioned send (the number
of contributions is known at the point that the partitioned
operation is initialized). This has much lower overhead than
the current MPI_THREAD_MULTIPLE methods for en-
suring thread-safe MPI operations, as it does not require
locking of key MPI library functions as the impact of the
call is confined to the partitioned operation’s bu↵er3. In
addition, there are opportunities for the MPI library to pro-
vide optimizations to the communication as a whole. For
example, a partitioned send could take one of two extremes
in when it would place data out on the wire for transmission,
it could send the data as one large message once all of the
parts have been placed in the bu↵er. Alternatively, it could
send each individual part as they are placed. Of course,
any combination in between these two extremes could also
be implemented. This can provide certain benefits, partic-
ularly when knowledge about the network can be applied,
like sending message chunks that are the size of the underly-
ing network MTU whenever they are complete. This should
provide a steady lower bandwidth requirement communica-
tion stream, that would also minimize wire-side communi-
cation overhead by optimizing payload sizes with respect
to header/tail data. While this can also be accomplished by
sending large messages, this approach can lead to less bursty
tra�c over time, lessening the possibility of temporally lo-
calized stress on the network resources.

2.2 Applicability to Stencil Codes
Stencil codes can be satisfied in their threading require-

ments with a call to MPI that allows for partial placement
of data into a communication bu↵er, letting MPI pack the
larger communication bu↵er as a whole and communicating
the entirety of it to other MPI processes. Since this thread-
ing/communication system relies on underlying shared mem-
ory among the threads, no scatter operation needs to take
place on the receiving process, so long as the target for place-

3Furthermore it works to localize any additional overhead

§ Subdivide larger buffers and send data
when ready

§ Could be optimized to specific networks
(MTU size)

§ Number of messages will be:
1 < #messages ≤ #threads/tasks
For a partition with 1 part per thread

§ Reduces the total number of messages
sent, decreasing matching overheads

Non-partitioned Naïve Partitioned

Optimized Partitioned

Hardware adds more parallelism
More device contexts to separate traffic
◦ More hardware to use for sending data independently

More paths through the network
◦ Leverage the network resources more than single path routing

More options for direct accelerator messaging
◦ Build in pready support to GPUs for triggering

CPU Application Benefit
Real reactor physics proxy app: SimpleMOC

 0

 2000

 4000

 6000

 8000

 10000

1K
iB

4K
iB

16
KiB

64
KiB

25
6K

iB
1M

iB
4

M
iB

16
M

iB

64
 M

iB

25
6

M
iB

B
an

dw
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

Aggregation Optimization KNL 10ms Compute 1% Noise

 64 threads optimized
 64 threads base

(a) 10 ms compute

 0

 2000

 4000

 6000

 8000

 10000

1K
iB

4K
iB

16
KiB

64
KiB

25
6K

iB
1M

iB
4

M
iB

16
M

iB

64
 M

iB

25
6

M
iB

B
an

dw
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

Aggregation Optimization KNL 50ms Compute 1% Noise

 64 threads optimized
 64 threads base

(b) 50 ms compute

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1K
iB

4K
iB

16
KiB

64
KiB

25
6K

iB
1M

iB
4

M
iB

16
M

iB

64
 M

iB

25
6

M
iB

B
an

dw
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

Aggregation Optimization KNL 100ms Compute 1% Noise

 64 threads optimized
 64 threads base

(c) 100 ms compute

Fig. 7. Partitioned Communication with Aggregation of Message for 64 threads with varying amounts of compute loop time (1% noise).

of 18.5% at 256 compute threads and 10% noise, and it peaks at
26.1% at 64 compute threads and 2% noise. Application runtime
improvement ranges from 2.6% for 64 compute threads and 0%
noise to 4.8% with 128 compute threads and 2% noise. Overall, both
runtime and communication time improvements are relatively similar
over the ranges of artificial noise injection because of the nature of
the communication that occurs: the communication is small enough
in size (approx. 130 MiB total) that even small noise percentages
allow good early-bird communication.

Finepoints has one disadvantage with SimpleMOC: there is only
one hard-coded loop of the algorithm, meaning that there is only
one communication phase. This limitation means that finepoints must
absorb all of the overhead of communication setup that would other-
wise be amortized away by repeating communications to neighbors
in successive loops, but the results still demonstrate improvement.

 0

 5

 10

 15

 20

 25

 30

C
om

m
. T

im
e

64
 T

hr
ea

ds

R
un

tim
e

64
 T

hr
ea

ds

C
om

m
. T

im
e

12
8

Thr
ea

ds

R
un

tim
e

12
8

Thr
ea

ds

C
om

m
. T

im
e

25
6

Thr
ea

ds

R
un

tim
e

25
6

Thr
ea

ds

P
e
rc

e
n
ta

g
e
 I
m

p
ro

ve
m

e
n
t

Percentage Improvement of SimpleMOC with Finepoints

% Noise
0%
1%
2%
3%
5%

10%

Fig. 8. Finepoints impact on SimpleMOC performance

V. RELATED WORK
There have been past attempts to integrate threading within MPI,

such as MPI/RT [23] and FG-MPI [15]. While promising, these
attempts have not become widely used MPI implementations and
have not been integrated into the MPI standard. Work has also been
done in analyzing the performance of existing threading modes in the
standard [25]. Other efforts have included work on providing bench-
marks for testing and profiling MPI RMA multithreaded behavior [9].
The general concept of composing RDMA messages into a large
transaction has been explored for application in unreliable datagram
networks at the hardware level [12], [21]. Similar benchmarks have
also been developed for other one-sided communication APIs like
OpenSHMEM [27]. Lastly, commercial MPI’s such as MPI/Pro,
which were designed for internal concurrency and the option of

blocking completion notification (to avoid polling), are no longer
widely available [6].

Since 2015, the MPI forum has had a proposal before it to support
threads through endpoints [7], in which each thread can be assigned a
unique rank in an endpoint communicator. Both the current threading
support in MPI and the endpoints proposal described in this paper
require that MPI be able to manage individual threads either through
thread safety or by using additional resources to account for the
threads. This work differs from previous efforts by the requirements
it places on the applications and the corresponding decrease both in
resources needed by MPI and in synchronization overhead.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we have introduced the partitioned send approach

and discussed the key motivations behind the need for this approach.
Providing threading support through implicit methods such as per-
sistent communication–type partitioned sends allows for ultra-low
overhead thread safety that beats a current highly optimized threading-
optimized MPI implementation and fits the existing application code
methodologies. A prototype implementation that incorporates early-
bird communication—the ability to move data aggressively through
the network—shows performance advantages on a realistic HPC
system for an exascale proxy application. Finepoints provides up to
4.8% improvement in runtime and 26.1% improvement in communi-
cations for a reactor physics neutron transport code. The advantages
are significant over the common way to marshal and unmarshal
communication between process pairs, in which the producer uses
actors/threads to produce components of the data to be transferred.

Finepoints will be integrated with major open-source MPI imple-
mentations. This integration is expected to yield higher-performance
finepoints than our prototype library has already achieved on Sim-
pleMOC, a reactor physics proxy application. Overall, we have
found that finepoints can solve long-standing multithreaded MPI
performance issues and provide up to 12⇥ improvement in perceived
bandwidth over single-threaded MPI, simply through early-bird com-
munication.

REFERENCES

[1] B. W. Barrett, R. Brightwell, et al. An evaluation of MPI message rate
on hybrid-core processors. International Journal of High Performance
Computing Applications, 28(4):415–424, 2014.

[2] B. W. Barrett, R. Brightwell, et al. The Portals 4.1 networking
programming interface. Tech. Rep. SAND2017-3825, Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2017.

[3] R. F. Barrett, D. T. Stark, et al. Toward an evolutionary task parallel
integrated MPI+X programming model. In 6th Intl. Workshop on
Programming Models and Applications for Multicores and Manycores,
pp. 30–39. ACM, 2015.

[4] D. E. Bernholdt, S. Boehm, et al. A survey of MPI usage in the U.S.
Exascale Computing Project. Concurrency and Computation: Practice
and Experience, in press. In press.

GPU-initiated
Partitioned

Example
Adding in GPUs, we have similar flow to
CPU only partitioned

Pready/arrived are implemented in GPU
space

Can bypass CPU for communication

Credit: Yiltan Temucin et al. To appear ExaMPI

24

Usage model - Kernel communication triggering

Host:

MPI_Psend_init(..., &request);

for (...) {

 MPI_Start(&request);

 kernel<<<...>>>(..., request);

 MPI_Wait(&request);

}

MPI_Request_free(&request);

GPU Kernel:

__device__ kernel(..., MPI_Request request)
{

 int i = my_partition[my_id];

 /* Compute and fill partition i then mark
ready: */

 MPI_Pready(i, request);

}

Note: CPU does communication setup and completion steps for MPI. Setup commands on
NIC and poll for completion of entire operation. Kernel just indicates when NIC/MPI can
send data. Ideally want to trigger communication from GPU to fire off when data is ready
without communication setup/completion in kernel

One way to do it – with extras
MPIX_Device int MPIX_Pready(int partition, MPIX_Prequest preq);

__global__ int kernel_B(MPIX_Prequest preq, double *sbuf)

{

int idx = threadIdx.x + blockDim.x * threadIdx.y; /* Do Work */
MPIX_Pready(idx, preq);

}
__host__ int host_function(MPI_Request req,

MPI_Start(req)

double *sbuf)

{ MPIX_Pbuf_Prepare(req);

if (first_iteration) {MPIX_Prequest_create(preq, req); }

kernel_B<<<stream>>>(preq, sbuf);

/* Do work on host */

MPI_Wait(req); }

Wait, what are those MPIX calls?
We need to be able to define what requests look like on a GPU
◦ GPU MPI_Request may not equal CPU-side MPI request struct
◦ Why? Much better ways to lay out data for GPUs to use efficiently than

CPU-type structures

We also need the GPU to have requests that are already setup for it
◦ Helps with performance

Is this what will be in future versions?
◦ No, we will define the needs in bindings for the kernel environments

Avoiding synchronization
Synchronization is costly, so Partitioned avoids this by creating logical separation on data
movement based on the partition numbering

See that simple vector addition kernel with
synchronization happening grows in cost as grid
size grows but synchronization costs remain the
same

Avoid this by just not having to synchronize

->Idle CPU

Inefficient region to sync

Performance Benefits
Example: Jacobi solver

8-GPUs

We can see that not synchronizing is
helping in the smaller ranges, we’re seeing
a combination of not synchronizing with
early bird communication

Results scale up better with increasing
node counts

The Future
No need to stop at point-to-point

Partitioned collectives show promise, here is
first example of partitioned collectives
prototype running with GPU-initiated
communication

Can see that things are much better but still
not at vendor proprietary levels

Still plenty to be done
As shown with previous presentation, libraries are just deploying Partitioned,
more tuning needs to be done
◦ Many possible new optimizations, we are just scratching the surface with recent ideas, plenty

more to come

Adoption path still in front of us
◦ Applications can take advantage of partitioned communication
◦ Especially GPU applications with native bindings

Writing bindings for GPUs
◦ Side document to MPI

Thank You!

Questions?

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

