Partitionead
Communication to Support
Hybrid Programming

PRESENTER: DR. RYAN E. GRANT
STUDENT CREDIT: YILTAN TEMUCIN, JORDAN ABT, ELIZABETH REID

Hybrid Programming

*More than just MPI+X in the traditional sense
* Not just MPI+OpenMP

*Support for large amounts of concurrency

*Not necessarily on the CPU-only
* Need solutions for accelerators as well

*Let’s examine how we got here and what we need going forward and
how Partitioned communication let’s us get there....

vvvvvvvvvv

Why Partitioned? Why Now?

MPI use cases continue to evolve
MPI+X implies the use of threads, e.g. OpenMP

High Bandwidth Memory (HBM) plays a role
Faster memory built on-die/in-package but you get less capacity than previously

Buy DRAM for channels and get a lot of space you can use, not so with HBM
MPI processes can take a lot of memory each

Core counts skyrocketing
192 cores in an AMD EPYC, 384 in a dual-socket node

Remember 56-core used to be a many-core architecture?

Accelerators
Can’t rely on CPUs to move your messages anymore, different architectures, new challenges

What do we want in a solution?

Desirable/required features:

Low overhead
Having many messages and ranks causes message matching/steering overhead

Similar semantics to existing concurrency solutions
Ease of programmability

Decouple message passing setup/handling from data movement
Don’t need to setup at the time of sending
Useful for accelerators

Minimal locking/sycnhronization

Why not thread multiple?

Threads introduce significant issues with concurrency in existing MPI
implementations
MPI_THREAD_MULTIPLE is hard and implementations don’t do it well

Difficult to support concurrency without encountering conflicts

Need to expose the parallelism but without locking/synchronization
Existing solutions already provide a way

Build without conflicts between execution context (threads) and you don’t need to worry
about locking

= E= =—__= __ == =—/—=

COMPUTING AT EXTREME-SCALE
ADVANCED RESEARCH LAB

Concurrency costs

Have known about matching list performance
for sometime

Non-viable with many many messages, so you
can either avoid many messages that need
matching or reduce costs of matching

Partitioned avoids the matching outside of init
and avoids wildcards to let other matching
happen in efficient manners (e.g. hashing)

10°

= =
o o
w B

Average Search Depth
|_I
o

10" |

10°

EEE 9pt stencil
| I 27pt stencil
+ 3 512 msgs

8

16 32
Threads

Data from Measuring Multithreaded Message Matching Misery, EuroPar 2018, Whit Schonbein et al.

64

128

256

uuuuuuuuuu

Concurrency costs

Need to stay out of the grey region E 9pt stencil
. I 27pt stencil
Breakdown occurs here as we are using more 10" | &= 512 msgs

time to communicate than the time needed to do
an iteration of simulation

By keeping queues very short we can work at
fast speeds

Do this by avoiding message matching (almost)
entirely with partitioned

But still get matching-type semantics for
completion

Average Time to Drain Queue (usecs)

2 4 8 16 32 64 128 256
Threads

uuuuuuuuuu

But concurrency helps

1] "\ . 1 1
/ "~
. \
_____________ 1 .
" ; v
08 . A 08 -
S ‘\.l) &) -
(@) ‘\ QO @ L= 'l S
~— . — \./ \
5 \ \>_<, ‘\
o 06 y o 0.6] “
— . ,—
© \ T \
o /}* \\\\\ 4 o A
Q I SRR (PRI S A B \'\ " [0} g
o] N, N D
2 04 G Ny ©
()] \ 9]
0 By (4]
[0) \ [0}
2 e, T \ =
0.2 | e\
-------- N,
-------------- - TN,
b ai sttt Al bt et etk ale Ll PSSP Y
0 -

2k

LI B 70036, 7528y 22 & 703y 6, 7990 S, 7, LI G 70036, 7028y 22 G 700y 6, 7o Qa6
6 R P T T 6\4‘%%’@&4—%’%@%% 6 RN P LT %e*%e@%%’
Message Size (bytes) Message Size (bytes)
P=t —— P=2,T=2 ----- P=8,T=2 — —- P=f —— P=2,T=4 ----- P=8,T=4 —-—-
P=1,T=2 ---- P=4, T=2 «eeeee P=16,T=2 ----- P=1,T=4 ---- P=4, T=4 ---eeee P=16,T=4 -----

Impact of communication concurrency on message rate per second
for P processes and T threads per process on an Intel Phi

Takeaway: Fewer threads=better performance, due to poor MPI multi-threading

James Dinan, Ryan E. Grant, Pavan Balaji, Dave Goodell, Douglas Miller, Marc Snir, Rajeev Thakur, “Enabling communication concurrency through flexible MPI Endpoints”, International Journal of High
Performance Computing Applications, Volume 28, Issue 4, pp. 390-405, November 2014. Impact factor: 1.63

n

OMPUTING AT EXTREME-SI
DOVANCED RESEARCH LAB

Partitionead
Communication

MP| Partitioned Communication
Concepts

Many actors (threads) contributing to a larger operation in MPI
Same number of messages as today!
No new ranks — no need to understand target thread

Many threads work together to assemble a message
MPI only has to manage knowing when completion happens
These are actor/action counts, not thread level collectives

Persistent-style communication
Init...(Start...test/wait)...free

No heavy MPI thread concurrency handling required
Leave the placement/management of the data to the user

No more complicated packing of data, send structures when they become available

EEEEEEEEEEEEEEEEEEEEE
nnnnnnnn

How to use Partitioned MP]

Like persistent communications, setup the operation
int MPI_Partitioned_send_init(void *buf, int partitions, int count,
MPI_Datatype data_type, int to_rank, int to_tag, int num_partitions,
MPI_Info info, MPI_Comm comm, MPI_Request *request)

Start the request
int MP1_Start(MPI_Request request)

Add items to the buffer
int MP1_Pready(int partition, MPl_Request request)
MPI_Pready is thread-safe and meant to be called from separate threads

Wait on completion
int MPI_Wait(MPI_Request request)

Optional: Use the same partitioned send over again
int MP1_ Start(MPI_Request request)

Persistent Partitioned Buffers

Expose the “ownership” of a buffer as shared to MPI

Need to specify the operation to be performed before contributing segments

MPI implementation doesn’t have to care about sharing
Only needs to know how many times it will be called

Applications are required to manage thread buffer ownership such that the buffer is
valid

The same as would be done today for codes where many threads work on a dataset (with the
exception of reductions)

Result: MPl is thread agnostic with a minimal synchronization overhead
(atomic_fetch _and add)

Can alternatively use a task model instead of threads, IOVEC instead of contiguous buffer

New Type of Overlap

“Early bird communication”

Early threads can start moving data right away

Can implement using RDMA to avoid message matching

Partitioned Send Timeline

"\ Thread #3 Data iy Thread #4 Data
Transfer Transfer

hread #1 Data
Transfer

Thread #2 Data
Transfer

Traditional Single Threaded Send Timeline

Thread #1 Data | Thread #2 Data | Thread #3 Data | Thread #4 Data
Transfer Transfer Transfer Transfer

A

All threads have joined
and send call is issued

uuuuuuuuuu

GPUs and Accelerators

GPUs cannot run MPI libraries natively — at least not well

Need coordination for network transfers
But don’t want to setup communications from step one on the GPU/Accelerator

Minimize overhead of communication initialization
Many potential notifications — must be lightweight

Existing NIC hardware can use triggering
Need a mechanism in MPI to do lightweight triggering

Communication can be optimized by host CPU
CPU can optimize to network before the transfer takes place

Optimize number of transfers, when things trigger

Allow for Better Parallelism in MPI

Concept of many actors (threads/warps/thread blocks) contributing to a larger operation in MPI
Same number of messages as you use in isend/irecv today
No new ranks

Many threads work together to assemble a message
MPI only has to manage knowing when completion happens
These are actor/action counts, not thread level collectives, to better enable tasking models

No heavy MPI thread concurrency handling required
Leave the placement/management of the data to the user
Knowledge required: number of workers, which is easily available

Bonus: Match well with Offloaded NIC capabilities
Use counters for sending/receiving

Utilize triggered operations to offload sends to the NIC

Persistent Partitioned Buffers

Expose the “ownership” of a buffer as a shared to MPI

Need to describe the operation to be performed before contributing segments

MPI implementation doesn’t have to care about sharing
Only needs to understand how many times it will be called

Threads are required to manage their own buffer ownership such that the buffer is valid

The same as would be done today for code that has many threads working on a dataset (that’s not
a reduction)

Result: MPI is thread agnostic with a minimal synchronization overhead (atomic_inc)
Can alternatively use task model instead of threads, IOVEC instead of contiguous buffer

Example from MPI-4.0

#define NUM_THREADS 8
#define NUM_TASKS 64

#define PARTITIONS NUM_TASKS
#define PARTLENGTH 16

#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH
int main(int argc, char *argv[]) /* send-side partitioning */

{

H#pragma omp task firstprivate(partition_num)

/* compute and fill partition #partition_num, then mark ready: */

/* buffer is filled in arbitrary order from each task */
MPI_Pready(request, partition_num);
} /*end task*/

double message[MESSAGE_LENGTH];
int send_partitions = PARTITIONS,
send_partlength = PARTLENGTH,
recv_partitions =1,
recv_partlength = PARTITIONS*PARTLENGTH
int count =1, source =0, dest=1,tag=1,
flag = 0;
int myrank;
int provided;
MPI_Request request;
MPI_Info info = MPI_INFO_NULL;
MPI_Datatype send_type;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_SERIALZED) MPI Abort(MPI COMM_WORLD, EXIT_FAILURE);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
MPI_Type_commit(&send_type);

if (myrank ==0) /* code for process zero */
MPI_Psend_init(message, send_partitions, count, send_type, dest, tag,
info, MPI_COMM_WORLD, &request);
MPI_Start(&request);
#pragma omp parallel shared(request) num_threads(NUM_THREADS)
{

#pragma omp single

/* single thread creates 64 tasks to be executed by 8 threads */
for (int partition_num=0;partition_num<NUM_TASKS;partition_num++)

COMPUTING AT EXTREME-SCALE

ADVANCED RESEARCH LAB

} /¥ end for */
}/* end single */
}/* end parallel */
while(!flag)

/* Do useful work */
MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */

}
MPI_Request_free(&request);
else if (myrank == 1) /* code for process one */

MPI_Precv_init(message, recv_partitions, recv_partlength, MP|_DOUBLE,
source, tag, info, MPI_COMM_WORLD, &request);

MPI_Start(&request);
while(!flag)

/* Do useful work */

MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
/* Do useful work */

}
MPI_Request_free(&request);

}
MPI_Finalize();
return O;

}

ueen’'s

UNIVERSITY

COMPUTING AT EXTREME-SCALE

Opportunities for Optimization

MPI implementations can optimize data transfer under the covers:

Thread ID # 15 places Thread ID #37 places
data to index 15 data to index 37

= Subdivide larger buffers and send data
when ready

Concurrently

Origin
Shared
Memory
Buffer

= Could be optimized to specific networks
(MTU size)

u Number Of messages Wi” bEZ Subsegment of the message is complete
with the addition of_ data to index #15, so
1 < #messages < #threads/tasks message segment Is sent

For a partition with 1 part per thread

Target
Shared
Memory
Buffer

= Reduces the total number of messages
sent, decreasing matching overheads

the target side

Non-partitioned Naive Partitioned

Optimized Partitioned

Hardware adds more parallelism

More device contexts to separate traffic
More hardware to use for sending data independently

More paths through the network
Leverage the network resources more than single path routing

More options for direct accelerator messaging
Build in pready support to GPUs for triggering

CPU Application Benefit

Real reactor physics proxy app: SimpleMOC

Percentage Improvement of SimpleMOC with Finepoints

30
25
20
15
10

Percentage Improvement

uuuuuuuuuu

GPU-initiated
Partitioned

Example

)) Pl-ocesso ... Processl ...

Adding in GPUs, we have similar flow to |
ey Host GPU, GPU, Host,
CPU only partitioned | |
§ Psend_init o
. Precv_init

Pready/arrived are implemented in GPU ~ [Pouf_prepare

§]) Pbuf_prepare|

Space |Prequest_create }—.b I

ol 4.—{Prequest_create|

&

Can bypass CPU for communication

|Wait

Credit: Yiltan Temucin et al. To appear ExaMPI

Usage model - Kernel communication triggering

GPU Kernel:

—> __ device__ kernel(..., MPI_Request request)
{
int i = my_partition[my_id];

/* Compute and fill partition i then mark
ready: */

MPI_Pready(i, request);
3

Note: CPU does communication setup and completion steps for MPI. Setup commands on
NIC and poll for completion of entire operation. Kernel just indicates when NIC/MPI can
send data. Ideally want to trigger communication from GPU to fire off when data is ready

without communication setup/completion in kernel

EEEEEEEEEEEEEEEEEEEEEEEE
uuuuuuuuuu

EEEEEEEEEEEEEEEEEEE

One way to do it — with extras

MPIX_Device int MPIX_Pready(int partition, MPIX_Prequest preq);

__global__int kernel_B(MPIX_Prequest preq, double *sbuf)

{

int idx = threadldx.x + blockDim.x * threadldx.y; /* Do Work */
MPIX_Pready(idx, preq);

}_host_ int host_function(MPI_Request req,
MPI_Start(req)

double *sbuf)

{ MPIX_Pbuf Prepare(req);

if (first_iteration) {MPIX_Prequest_create(preq, req); }
kernel_B<<<stream>>>(preq, sbuf);

/* Do work on host */

MPI_Wait(req); }

COMPUTING AT EXTREME-SCALE J
e e e Queen's

Wait, what are those MPIX calls?

We need to be able to define what requests look like on a GPU
GPU MPI_Request may not equal CPU-side MPI request struct

Why? Much better ways to lay out data for GPUs to use efficiently than
CPU-type structures

We also need the GPU to have requests that are already setup for it
Helps with performance

Is this what will be in future versions?
No, we will define the needs in bindings for the kernel environments

Avoiding synchronization

Synchronization is costly, so Partitioned avoids this by creating logical separation on data
movement based on the partition numbering

See that simple vector addition kernel with

synchronlzatlon happen!ng grows in cost a-s grid cudaStreamSynchronize

size grows but synchronization costs remain the o Reiniel Taiioh.-2-ctidaStreamBynehionize
same % 1024 Overlap Potential ->|dle CPU
Avoid this by just not having to synchronize i B

16 64 26 1K/ 4K 16K 64K
Kerne d Size

4

Inefficient region to sync

EEEEEEEEEEEEEEEEEEEEEE y
ADVANCED RESEARCH LAB Ql’eu'g!;}lg

Performance Benefits

Example: Jacobi solver

8-GPUs
I Send/Recv
w I Partitioned
S
We can see that not synchronizing is = 500"
helping in the smaller ranges, we’re seeing ©
a combination of not synchronizing with

early bird communication 4 S Z 3 6 z
! Crgpe Mg Mg 2’“(16;{ o 32 Q&Y

Results scale up better with increasing

Global Domain Size
node counts

The Future

No need to stop at point-to-point

.y . . . g . MPI Allreduce B ncclAllReduce
Partitioned collectives show promise, hereis = B Partitioned
first example of partitioned collectives £ 10
prototype running with GPU-initiated 5
communication — 100
&

256K 512K 1M 2M 4M 8M 16M 32M
Gradient Buffer Size

Can see that things are much better but still
not at vendor proprietary levels

Still plenty to be done

As shown with previous presentation, libraries are just deploying Partitioned,
more tuning needs to be done

Many possible new optimizations, we are just scratching the surface with recent ideas, plenty
more to come

Adoption path still in front of us
Applications can take advantage of partitioned communication

Especially GPU applications with native bindings

Writing bindings for GPUs
Side document to MPI

Thank Youl!

Questions?

Bl s e oo smaene oo Canada
We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

ADVANCED HESEAHEF;LAE ueen’s

