MPI Partitioned Communication

AN INTRODUCTION

RYAN E. GRANT
QUEEN’S UNIVERSITY, CANADA




COMPUTING AT EXTREME-SCALE
ADVANCED RESEARCH LAB

Why do we need this?

MPI use cases continue to evolve
MPI+X implies the use of threads, e.g. OpenMP

Potentially thousands of MPI processes on a single node
HBM restricts memory sizes, no longer a easy resource

Can complicate network resource management

Sources of concurrency
Accelerators
GPUs need to send data easily, avoiding heavy weight synchronization
Core counts

Traditional CPU design continues to add cores in new generations
OpenMP

Can we use MPI inside of OpenMP parallel regions?

ssssssss



Living in @ World with Threads

Desirable/required features:

Low overhead

Similar semantics to existing threading (minimal changes)
Ease of programmability

Each thread has access to the communication library (no funneling)
Also ease programmability, e.g. use MPI calls in an OpenMP region

Communication endpoint granularity matched to the work
Not too fine, not too coarse, just right...
Fine granularity at endpoints requires networking resources

Keeping track of many ranks, caching state related to these ranks, etc.




MPI Partitioned

Newest chapter to MPI standard (4.0)

Decouples the point-to-point (P2P) data movement from the message sending requirements on
the network itself
Prepare for data movement and match send/recv buffers before moving the actual data

Move data in chunks when it becomes ready rather than all at once
Traditional P2P only happens when the whole buffer is ready

Numerous benefits in being able to optimize when to send data and how to manage partitions
Depends on your compute architecture where you can take advantage of them

ssssssss



Basic Operations

MPI_Psend/recv_init — initialize a partitioned communication
Like persistent ops only need to do this once and can repeat op without init again

Note unlike persistent, this matches here, not with each start/op
Includes src/dst and number of partitions

MPI_Start — start a partitioned communication just like persistent
MPI_Pready — call for sender to indicate a partition is ready to send
MPI_Parrived — check if a particular partition is available at the receiver

MPI_Test/Wait — check for completion of the partitioned operation

ssssssss



How does this work for accelerators?

Separates the setup of the communication from the data movement
E.g. call pready on the GPU, all other calls on CPU

But MPI is not explicitly GPU aware, so how does this work?
Currently works for CPUs, some prototypes exist but...

Better to build this into the semantics of GPU-MPI instead
Side document in the works to define semantics of GPU interfaces
CUDA, RocM, SYCL, etc.

Build out ability to expose data readiness at fine-grained levels without requiring heavy weight, wide
synchronizations

Well defined state of initialization on kernel launch




Usage model - Kernel communication triggering

GPU Kernel:

—> __ device__ kernel(..., MPI_Request request)
{
int i = my_partition[my_id];

/* Compute and fill partition i then mark
ready: */

MPI_Pready(i, request);
3

Note: CPU does communication setup and completion steps for MPI. Setup commands on
NIC and poll for completion of entire operation. Kernel just indicates when NIC/MPI can
send data. Ideally want to trigger communication from GPU to fire off when data is ready

without communication setup/completion in kernel

COMPUTING AT EXTREME-SCALE
uuuuuuuuuu



Non-partitioned Naive Partitioned

Optimized Partitioned




Thank you

Questions?




