
MPI Partitioned Communication

AN INTRODUCTION

RYAN E. GRANT
QUEEN’S UNIVERSITY, CANADA

Why do we need this?
MPI use cases continue to evolve

◦ MPI+X implies the use of threads, e.g. OpenMP

Potentially thousands of MPI processes on a single node
◦ HBM restricts memory sizes, no longer a easy resource
◦ Can complicate network resource management

Sources of concurrency
◦ Accelerators

◦ GPUs need to send data easily, avoiding heavy weight synchronization

◦ Core counts
◦ Traditional CPU design continues to add cores in new generations

◦ OpenMP
◦ Can we use MPI inside of OpenMP parallel regions?

2

Living in a World with Threads
Desirable/required features:
Low overhead

Similar semantics to existing threading (minimal changes)
◦ Ease of programmability

Each thread has access to the communication library (no funneling)
◦ Also ease programmability, e.g. use MPI calls in an OpenMP region

Communication endpoint granularity matched to the work
◦ Not too fine, not too coarse, just right…
◦ Fine granularity at endpoints requires networking resources

◦ Keeping track of many ranks, caching state related to these ranks, etc.

3

MPI Partitioned
Newest chapter to MPI standard (4.0)

Decouples the point-to-point (P2P) data movement from the message sending requirements on
the network itself

◦ Prepare for data movement and match send/recv buffers before moving the actual data
◦ Move data in chunks when it becomes ready rather than all at once

◦ Traditional P2P only happens when the whole buffer is ready

Numerous benefits in being able to optimize when to send data and how to manage partitions
◦ Depends on your compute architecture where you can take advantage of them

4

Basic Operations
MPI_Psend/recv_init – initialize a partitioned communication

◦ Like persistent ops only need to do this once and can repeat op without init again
◦ Note unlike persistent, this matches here, not with each start/op
◦ Includes src/dst and number of partitions

MPI_Start – start a partitioned communication just like persistent

MPI_Pready – call for sender to indicate a partition is ready to send

MPI_Parrived – check if a particular partition is available at the receiver

MPI_Test/Wait – check for completion of the partitioned operation

5

How does this work for accelerators?
Separates the setup of the communication from the data movement

◦ E.g. call pready on the GPU, all other calls on CPU

But MPI is not explicitly GPU aware, so how does this work?
◦ Currently works for CPUs, some prototypes exist but…

Better to build this into the semantics of GPU-MPI instead
◦ Side document in the works to define semantics of GPU interfaces

◦ CUDA, RocM, SYCL, etc.

◦ Build out ability to expose data readiness at fine-grained levels without requiring heavy weight, wide
synchronizations

◦ Well defined state of initialization on kernel launch

6

7

Usage model - Kernel communication triggering

Host:

MPI_Psend_init(..., &request);

for (...) {

 MPI_Start(&request);

 kernel<<<...>>>(..., request);

 MPI_Wait(&request);

}

MPI_Request_free(&request);

GPU Kernel:

__device__ kernel(..., MPI_Request request)
{

 int i = my_partition[my_id];

 /* Compute and fill partition i then mark
ready: */

 MPI_Pready(i, request);

}

Note: CPU does communication setup and completion steps for MPI. Setup commands on
NIC and poll for completion of entire operation. Kernel just indicates when NIC/MPI can
send data. Ideally want to trigger communication from GPU to fire off when data is ready
without communication setup/completion in kernel

Non-partitioned Naïve Partitioned

Optimized Partitioned

Thank you

9

Questions?

