
Jeff Hammond
Principal Software Architect, NVIDIA

Co-chair, MPI Forum ABI WG
jeff.science@gmail.com

MPI
Application Binary Interface (ABI)

Standardization

mailto:jeff.science@gmail.com

MPI ABI Status Quo

MPI is an API standard, which defines the source code behavior in C (C++) and
Fortran. The compiled representation of MPI features is implementation-defined.

If you compile with one of the following MPI families, you MUST run with the same.

1. MPICH / Intel MPI / MVAPICH / Cray MPI
2. Open MPI / NVIDIA HPC-X / Amazon MPI / IBM Spectrum MPI

Family 1 exists because there was a demand for interoperability with Intel MPI due
to the prevalence of usage in ISV codes.

Family 2 is not guaranteed to be consistent, especially across major versions.

1 = https://www.mpich.org/abi/

https://www.mpich.org/abi/

API versus ABI

API

int MPI_Bcast(void * buffer, int count, MPI_Datatype d, int root, MPI_Comm c);

MPI_Datatype and MPI_Comm are unspecified types

ABI

typedef struct ompi_datatype_t * MPI_Datatype; // Open MPI family

typedef int MPI_Datatype; // MPICH family

Lots of other stuff like SO names, SO versioning, calling convention, etc.

Modern software use cases:

● Third-party language support, e.g. Python, Julia, Rust, etc.
● Package distribution, e.g. Spack, Apt, etc.
● Tools become implementation-agnostic
● Containers
● More efficient testing (build only once)

We can:

● Architectural reasons not to are gone
● Two platform ABIs cover >90% of HPC platforms

Why?

Python

PETSc, Rust

Julia

MPICH

Open MPI

wi4mpi, containers, MPC

Rust, containers

NVHPC SDK, Fortran

TAU, E4S

Julia, MPItrampoline

Design Decisions

The Status Object

typedef {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

int mpi_reserved[5];

} MPI_Status;

Bigger than MPICH (5) and OMPI (6).

Reserves room for a 64b count, a 32b
cancelled, and a 64b pointer, for example.

32 bytes is good for alignment.

Handles

typedef struct MPI_ABI_Comm * MPI_Comm;

typedef struct MPI_ABI_Request * MPI_Request;

...

Satisfies existing requirements (= comparison, fits into a pointer because attributes).

Supports type-safety. Compilers know that MPI_Comm is not MPI_Group.

Downside: conversions to/from Fortran are not free like MPICH (at least with LP64).

Handle Constants

0b 0000 0000 0000 to 0b 1111 1111 1111 reserved # zero page

0b 0000 0000 0000 invalid handle (detect uninitialized data)

0b 000* **** **** Everything except datatypes

0b 001* **** **** MPI_Datatype branch

0b 0010 **** **** Sufficient for all datatypes today

0b 0011 **** **** Reserved for future use

MPI_<handle>_NULL is always the handle prefix followed by 0s.

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

0b 0010 xxxxx yyy 5b for category, 3b for kind

 00... not strictly fixed-size

 01... C/C++ fixed-size

 10... reserved

 11... Fortran fixed-size

 ^^^ encoded size bits (log2 of size in bytes)

 ^ fixed-size bit

Implementations can test for fixed-size, then mask and shift
to get the element size in bytes.

Handle Constants: Fixed-size datatypes

0b000: MPI_INT(n)_T

0b001: MPI_UINT(n)_T

0b010: <float (n)b>

0b011: (size=1) ? MPI_CHAR : <C complex 2x(n/2)b>

0b100: (size=1) ? MPI_SIGNED_CHAR : reserved datatype

0b101: (size=1) ? MPI_UNSIGNED_CHAR : reserved datatype

0b110: (size=2) ? <C++ bfloat16_t> : reserved datatype

0b111: (size=1) ? MPI_BYTE : <C++ complex 2x(n/2)b>

Handle Constants: C/C++ fixed-size kinds

0b000: MPI_INTEGER(n)

0b001: MPI_LOGICAL(n) (not standard)

0b010: MPI_REAL(n)

0b011: (size=1) ? MPI_CHARACTER : MPI_COMPLEX(n)

Handle Constants: Fortran fixed-size kinds

MPI_INT, MPI_LONG, even MPI_FLOAT are not fixed-size datatypes
and require a size lookup.

It may save a few cycles to use MPI_BYTE and sizeof(), but
measurements show no impact (~11 nanoseconds with both MPICH
and OMPI).

MPI_INTEGER, MPI_REAL and MPI_DOUBLE_PRECISION are not
fixed-size datatypes. More on this later...

Handle Constants: Other datatypes

32-61 Op

256-288 Comm, Group, Win, File, Session, Message, Errhandler,
Request

512-601 Datatype: variable-size and C/C++ fixed-size

602-623 with extras (e.g. std::complex<__float128>)

704-747 Datatype: Fortran fixed-size

Handle Constants - Table sizes

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

https://github.com/mpiwg-abi/specification-text-draft/blob/main/print-handle-constants.py

Requirements:

- Position sequences: 0..n (MPI_SUCCESS..MPI_ERR_LASTCODE)
- XOR-able, i.e., 2^k (e.g. MPI_MODE_NOCHECK)
- Negative (MPI_ANY_SOURCE)
- Sizes (e.g. MPI_BSEND_OVERHEAD)
- Ordered subsets (e.g. MPI_THREAD_*)
- Arbitrary (e.g. MPI_ORDER_FORTRAN)

Except for error codes, array sizes and XOR-ables, all integer constants are
unique and negative. Error messages can tell user what they passed as it
appears in the source code.

Integer Constants

// Buffer Address Constants

#define MPI_BOTTOM ((void*)0)

#define MPI_IN_PLACE ((void*)1)

// Constants Specifying Empty or Ignored Input

#define MPI_ARGV_NULL ((char**)0)

#define MPI_ARGVS_NULL ((char***)0)

#define MPI_ERRCODES_IGNORE ((int*)0)

#define MPI_STATUS_IGNORE ((MPI_Status*)0)

#define MPI_STATUSES_IGNORE ((MPI_Status**)0)

#define MPI_UNWEIGHTED ((int*)2)

#define MPI_WEIGHTS_EMPTY ((int*)3)

Other Constants

Special integer types

MPI integer types:

● MPI_Aint is intptr_t because that satisfies all of the requirements
○ Segmented addressing is irrelevant and should be removed.
○ Wide (128b) pointers (e.g. CHERI) are difficult to support with 64b addresses.

● MPI_Offset should be int64_t because that will be sufficient for ~30 years
○ We are still arguing about this, because apparently sparse files with 128b offsets are a thing.

● MPI_Count should be int64_t except on 128b systems (which we ignore)
○ Divorcing this from MPI_Offset has been discussed…

● MPI_Fint must match the Fortran compiler and is thus impossible
○ This exists in C via f2c/c2f as well as MPI_Type_size(MPI_INTEGER,..)

MPI ABI Packaging

● The header is abi/mpi.h
○ #include <mpi.h> still works - no code changes required to adopt ABI
○ The Forum should distribute a standard header for convenience

● The library is libmpi_abi.ext
○ Implementations are instructed to use platform-specific SO versioning conventions
○ The Forum should distribute a standard SO for convenience

● The ABI is versioned independently from the API
○ ABI starts with 1.0
○ Backwards-compatible changes (e.g. new handle type) increment the minor version
○ Backwards-incompatible changes increment the major version
○ Adding a new function to the API does not change the ABI

1. Standalone: dlopen MPI, dlsym everything, translate everything at runtime.
○ wi4mpi (CEA)
○ MPItrampoline (Erik Schnetter)
○ Mukautuva (Jeff Hammond)

2. Integrated: the MPI library implements the ABI in a separate header+library
and does all the conversions to the existing ABI internally.

○ MPICH has done this already
3. Native: the MPI library implements the ABI throughput.

Implementing the standard ABI

https://github.com/jeffhammond/mukautuva

1. --enable-error-checking=no --enable-fast=Os --enable-g=none --with-device=ch4:ucx
2. Same as 1 plus --enable-mpi-abi

https://github.com/jeffhammond/mukautuva

When?

● Targeting MPI-Next as a single-feature ABI-only release (mid-2025?).
● Mukautuva, wi4mpi, and MPItrampoline can support this immediately.
● MPICH has a prototype already.
● Open MPI has not implemented this but they say it’s easy.

Diffusion: upstream -> release -> packaging, etc.

FAQ

● Fortran is the only remaining issue. The C-specific part is done.
● Launchers are not part of the ABI. There are at least two options:

○ Slurm and PBS launchers are supported by all the major MPIs already.
○ mpirun can set the shared library to use, in which case the launcher and library will match.

● We will still use mpi.h for source compatibility. SO will be libmpi_abi.so.
● SO expected to follow platform-specific SO versioning convention.
● Wrapper scripts (e.g. mpicc) are not standard but we will probably have

“mpicc_abi” or “mpicc -abi”.
● MPICH and Open MPI will continue to support their existing ABIs.

The End

